2025年名师帮同步学案九年级数学全一册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名师帮同步学案九年级数学全一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年名师帮同步学案九年级数学全一册人教版》

17.(例11)如图,$Rt△ABC$中,$∠C=90^{\circ },AB,BC,CA$的长分别为c,a,b,$\odot O$是$Rt△ABC$的内切圆,半径为r.求证:$r=\frac {ab}{a+b+c}=\frac {a+b-c}{2}.$
答案:
(例 11)证明:如图,过点O 作$O D \perp A B $于点D ,$O E \perp B C $于点E ,$O F \perp A C $于点F ,连接A O ,B O ,C O ,

$\because \odot O $是$\triangle A B C $的内切圆,$\therefore O D = O E = O F = r ,$
$\because \angle A C B = 90 ^ { \circ } ,$A B = c ,B C = a ,AC = b ,$\therefore S _ { \triangle A B C } = \frac { 1 } { 2 } A C \cdot B C = \frac { 1 } { 2 } a b ,$
answer:解:(1)如图 1,过I 作$I E \perp A B $于点E ,$I F \perp A C $于点F ,$I G \perp B C $于点G ,图1$ \because A C = 8 ,$B C = 6 ,
$\therefore A B = 10 ,$$\because I $是$\triangle A B C $的内心,
$\therefore C F = C G ,$A F = A E ,$B E = B G .\therefore C F + C G = C A + C B - A B = 4 ,$
$\therefore C F = C G = 2 ,$$\therefore A F = 6 .$
$\therefore A I = 2 \sqrt { 10 } .(2)$如图 2,连接A D ,B D ,C D ,则$\angle C A I = \angle B A I ,$图2$ \because \overparen { A D } = \overparen { B D } ,$
$\therefore A D = B D ,$$\angle A C I = \angle B C I = 45 ^ { \circ } ,$$\therefore C D $是$\angle A C B $的平分线,
$\therefore $点I 在线段C D 上,$\because \angle C A I = \angle B A I ,$$\angle A C I = \angle B C I = \angle B A D ,$
$\therefore \angle A I D = \angle C A I + \angle A C I = \angle B A I + \angle B A D = \angle D A I ,$$\therefore A D = I D ,$
$\therefore A B $为$\odot O $的直径,A D = B D ,$\therefore \triangle A B D $是等腰直角三角形,
$\therefore A D = \frac { \sqrt { 2 } } { 2 } A B = 5 \sqrt { 2 } ,$即$I D = 5 \sqrt { 2 } .$
18.如图,AB为$\odot O$的直径,C为$\odot O$上一点,点I为$△ABC$的内心,$AC=8,BC=6.$
(1)求AI的长;
(2)若$\widehat {AD}=\widehat {BD}$,求ID的长.

答案:

查看更多完整答案,请扫码查看

关闭