2025年小学毕业考试试卷精编数学徐州专版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年小学毕业考试试卷精编数学徐州专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第76页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
24. 按要求在方格图中画图并完成填空。(每个小方格的边长表示 1 厘米)
(1)把三角形 ABC 绕点 A 逆时针旋转$90^{\circ}$,请你画出旋转后的图形。旋转后点 B 的位置可以用数对(
(2)图中有由 4 个涂色方格组成的图形,请你再涂 2 个方格,使由 6 个涂色方格组成的图形是轴对称图形,并请你画出对称轴。(3 分)
(1)把三角形 ABC 绕点 A 逆时针旋转$90^{\circ}$,请你画出旋转后的图形。旋转后点 B 的位置可以用数对(
2
,4
)表示。(3 分)(2)图中有由 4 个涂色方格组成的图形,请你再涂 2 个方格,使由 6 个涂色方格组成的图形是轴对称图形,并请你画出对称轴。(3 分)
涂法(图略);对称轴(图略)
答案:
(1) 解析:
考查图形的旋转以及数对的表示。
先确定三角形$ABC$绕点$A$逆时针旋转$90^{\circ}$后的各点位置,点$A$位置不变,点$B$绕点$A$逆时针旋转$90^{\circ}$,原来$B$坐标为$(3,6)$,旋转后$B$的坐标变为$(2,4)$,点$C$绕点$A$逆时针旋转$90^{\circ}$,原来$C$坐标为$(6,4)$,旋转后$C$的坐标变为$(4,1)$,然后连接$A$、旋转后的$B$、旋转后的$C$,得到旋转后的三角形。
答案:
旋转后的图形(图略);$(2,4)$
(2) 解析:
考查轴对称图形的概念。
根据轴对称图形的性质,即沿一条直线对折后,两边能够完全重合,来尝试涂$2$个方格使图形成为轴对称图形,有多种涂法,比如可以在$(10,6)$和$(9,6)$涂色,对称轴为过$(9,5)$和$(11,5)$的直线(答案不唯一)。
答案:
涂法(图略);对称轴(图略)
(1) 解析:
考查图形的旋转以及数对的表示。
先确定三角形$ABC$绕点$A$逆时针旋转$90^{\circ}$后的各点位置,点$A$位置不变,点$B$绕点$A$逆时针旋转$90^{\circ}$,原来$B$坐标为$(3,6)$,旋转后$B$的坐标变为$(2,4)$,点$C$绕点$A$逆时针旋转$90^{\circ}$,原来$C$坐标为$(6,4)$,旋转后$C$的坐标变为$(4,1)$,然后连接$A$、旋转后的$B$、旋转后的$C$,得到旋转后的三角形。
答案:
旋转后的图形(图略);$(2,4)$
(2) 解析:
考查轴对称图形的概念。
根据轴对称图形的性质,即沿一条直线对折后,两边能够完全重合,来尝试涂$2$个方格使图形成为轴对称图形,有多种涂法,比如可以在$(10,6)$和$(9,6)$涂色,对称轴为过$(9,5)$和$(11,5)$的直线(答案不唯一)。
答案:
涂法(图略);对称轴(图略)
25. 以中心广场为观测点,填一填,画一画。
(1)向阳学校在中心广场(
(2)书店在中心广场南偏西$60^{\circ}$方向 400 米处,在图中表示出书店的位置。(2 分)
(1)向阳学校在中心广场(
北偏东45°
)方向(600
)米处。(2 分)(2)书店在中心广场南偏西$60^{\circ}$方向 400 米处,在图中表示出书店的位置。(2 分)
在中心广场南偏西60°方向,距离中心广场图上距离2厘米处标出书店位置
答案:
(1)
解析:本题考查根据方向和距离确定物体的位置。从图中可以看出,量得向阳学校与中心广场的图上距离是$3$厘米,根据图中所给的比例尺,$1$厘米代表$200$米,所以实际距离为$3×200 = 600$(米),且向阳学校在中心广场的北偏东$45^{\circ}$方向。
答案:北偏东$45^{\circ}$,$600$;
(2)
解析:本题考查根据方向和距离在图上表示出物体的位置。已知书店在中心广场南偏西$60^{\circ}$方向$400$米处,因为$400÷200 = 2$(厘米),所以在图上从中心广场开始,沿南偏西$60^{\circ}$方向画$2$厘米长的线段,其端点处就是书店的位置。
答案:图略(在中心广场南偏西$60^{\circ}$方向,距离中心广场图上距离$2$厘米处标出书店位置)。
(1)
解析:本题考查根据方向和距离确定物体的位置。从图中可以看出,量得向阳学校与中心广场的图上距离是$3$厘米,根据图中所给的比例尺,$1$厘米代表$200$米,所以实际距离为$3×200 = 600$(米),且向阳学校在中心广场的北偏东$45^{\circ}$方向。
答案:北偏东$45^{\circ}$,$600$;
(2)
解析:本题考查根据方向和距离在图上表示出物体的位置。已知书店在中心广场南偏西$60^{\circ}$方向$400$米处,因为$400÷200 = 2$(厘米),所以在图上从中心广场开始,沿南偏西$60^{\circ}$方向画$2$厘米长的线段,其端点处就是书店的位置。
答案:图略(在中心广场南偏西$60^{\circ}$方向,距离中心广场图上距离$2$厘米处标出书店位置)。
26. 数学中规定:连接多边形任意两个不相邻顶点的线段叫作多边形的对角线。

|
聪聪是名喜欢思考的学生,他发现正多边形的对角线条数和正多边形的边数存在某种规律,照这样的规律,正七边形共有(
|
聪聪是名喜欢思考的学生,他发现正多边形的对角线条数和正多边形的边数存在某种规律,照这样的规律,正七边形共有(
14
)条对角线,正 n 边形共有($\frac{n(n - 3)}{2}$
)条对角线。(2 分)
答案:
解析:
从正五边形的一个顶点出发可以画$2$条对角线,正五边形对角线总条数为$2 + 1 + 2=5$(条);
从正六边形的一个顶点出发可以画$3$条对角线,正六边形对角线总条数为$3 + 2 + 3 + 1=9$(条) 。
可以发现规律:正$n$边形从一个顶点出发可画$(n - 3)$条对角线,对角线总条数为$\frac{n(n - 3)}{2}$。
当$n = 7$时,正七边形对角线总条数为$\frac{7×(7 - 3)}{2}=\frac{7×4}{2}=14$(条)。
答案:$14$;$\frac{n(n - 3)}{2}$。
从正五边形的一个顶点出发可以画$2$条对角线,正五边形对角线总条数为$2 + 1 + 2=5$(条);
从正六边形的一个顶点出发可以画$3$条对角线,正六边形对角线总条数为$3 + 2 + 3 + 1=9$(条) 。
可以发现规律:正$n$边形从一个顶点出发可画$(n - 3)$条对角线,对角线总条数为$\frac{n(n - 3)}{2}$。
当$n = 7$时,正七边形对角线总条数为$\frac{7×(7 - 3)}{2}=\frac{7×4}{2}=14$(条)。
答案:$14$;$\frac{n(n - 3)}{2}$。
查看更多完整答案,请扫码查看