2025年1课3练江苏人民出版社九年级数学下册北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年1课3练江苏人民出版社九年级数学下册北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年1课3练江苏人民出版社九年级数学下册北师大版》

1 教材P18习题T4·变式 (2024·河北模拟)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC是( ).
A. 12sinα米 B. 12cosα米
C. $\frac{12}{\sin\alpha}$米 D. $\frac{12}{\cos\alpha}$米
 第1题
答案: A
2 (2024·西安雁塔区模拟)如图,在△ABC中,∠C = 45°,tan B = $\sqrt{3}$,AD⊥BC于点D,AC = $2\sqrt{6}$,若E,F分别为AC,BC的中点,则EF的长为( ).
A. $\frac{2\sqrt{3}}{3}$ B. 2 C. $\sqrt{3}$ D. $\sqrt{6}$
 BDF第2题
答案: B[解析]在Rt△ACD中,AC = 2√6,∠C = 45°,
∴AD = AC·sin 45° = 2√6×√2/2 = 2√3.
∵在Rt△ABD中,tan B = √3,
∴∠B = 60°.
∴AB = AD/sin 60° = 2√3/(√3/2) = 4.
∵E,F分别为AC,BC的中点,
∴EF是△ABC的中位线,
∴EF = 1/2AB = 2.
故选B.
思路引导:根据已知∠C = 45°,AC = 2√6,先在Rt△ACD中求出AD的长,再由tan B = √3求出∠B的度数,在Rt△ABD中求出AB的长,最后利用三角形的中位线定理求EF的长.
3 教材P16做一做·改编 如图,在Rt△ABC中,∠C = 90°,BC = 3,AC = $3\sqrt{3}$. 解这个直角三角形,则AB = ______,∠A = ______,∠B = ______.
   第3题
答案: 6 30° 60°  [解析]在Rt△ABC中,∠C = 90°,BC = 3,AC = 3√3,
∴AB = √(AC² + BC²) = √((3√3)² + 3²) = 6.
∵tan A = BC/AC = 3/(3√3) = √3/3,
∴∠A = 30°,
∴∠B = 90° - ∠A = 90° - 30° = 60°.
4 教材P16例1·改编 (2024·安徽池州青阳期末)已知锐角三角形ABC中,AB = AC = 10,tan B = 3,则BC的长为______.
答案:
2√10 [解析]如图,过点A作AD⊥BC于点D.
∵AB = AC,AD⊥BC,
∴BD = CD.
∵tan B = AD/BD = 3,
∴AD = 3BD.
设BD = x,则AD = 3x.
∵BD² + AD² = AB²,
∴x² + (3x)² = 10²,
∴x = √10(负值舍去),
∴BC = 2BD = 2x = 2√10
第4题
5 (2023·广元中考)如图,在平面直角坐标系中,已知点A(1,0),点B(0,-3),点C在x轴上,且点C在点A右方,连接AB,BC,若tan∠ABC = $\frac{1}{3}$,则点C的坐标为______.
   第5题
答案:
(9/4,0) [解析]设C(a,0),
∴OC = a.
∵点A(1,0),点B(0, - 3),
∴OA = 1,AC = a - 1,OB = 3,
∴BC = √(3² + a²) = √(a² + 9).
在Rt△OAB中,tan∠OBA = OA/OB = 1/3,
又tan∠ABC = 1/3,
∴∠OBA = ∠ABC.
如图,过点C作CD//y轴交BA的延长线于点D,
∴∠OBA = ∠D,∠AOB = ∠ACD,
∴△OBA∽△CDA,∠ABC = ∠D,
∴OB/CD = OA/CA,CD = BC,
∴OB/BC = OA/AC,
∴3/√(a² + 9) = 1/(a - 1),
解得a = 0(舍去)或a = 9/4,
∴点C的坐标为(9/4,0).
B亠第5题
6 教材P17随堂练习·改编 解直角三角形:
(1)∠C = 90°,AB = $5\sqrt{2}$,BC = 5;
(2)∠C = 90°,AC = $\sqrt{2}$,BC = $\sqrt{6}$.
答案:
(1)
∵∠C = 90°,AB = 5√2,BC = 5,
∴AC = √(AB² - BC²) = 5,
∴tan A = BC/AC = 1,
∴∠A = 45°,
∴∠B = 45°.
故AC = 5,∠A = ∠B = 45°.
(2)
∵∠C = 90°,AC = √2,BC = √6,
∴AB = √(AC² + BC²) = 2√2.
∵tan B = AC/BC = √2/√6 = √3/3,
∴∠B = 30°,
∴∠A = 90° - 30° = 60°.
故AB = 2√2,∠A = 60°,∠B = 30°.
7 教材P17习题T2·变式 在△ABC中,已知∠A:∠B:∠C = 1:2:3,c - b = $4 - 2\sqrt{3}$,解这个三角形.
答案:
∵∠A : ∠B : ∠C = 1 : 2 : 3,∠A + ∠B + ∠C = 180°,
∴∠A = 180°×1/(1 + 2 + 3) = 30°.
∴∠B = 60°,∠C = 90°.
∴sin B = sin 60° = b/c = √3/2,
∴b = √3/2c.
∵c - b = 4 - 2√3,
∴c - √3/2c = 4 - 2√3,解得c = 4.
∴b = 2√3.
∴a = c·sin A = 4×sin 30° = 2.
8 教材P16例2·变式 (2024·浙江中考)如图,在△ABC中,AD⊥BC,AE是BC边上的中线,AB = 10,AD = 6,tan∠ACB = 1.
(1)求BC的长;
(2)求sin∠DAE的值.
              ED第8题
答案:
(1)
∵AD⊥BC,
∴∠ADB = ∠ADC = 90°.
∵AB = 10,AD = 6,
∴BD = √(AB² - AD²) = √(10² - 6²) = 8.
∵tan∠ACB = 1,
∴CD = AD = 6,
∴BC = BD + CD = 8 + 6 = 14.
(2)
∵AE是BC边上的中线,
∴CE = 1/2BC = 7,
∴DE = CE - CD = 7 - 6 = 1,
∴AE = √(AD² + DE²) = √(6² + 1²) = √37,
∴sin∠DAE = DE/AE = 1/√37 = √37/37.

查看更多完整答案,请扫码查看

关闭