第10页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
1.(2024北京东城汇文中学模拟)在△ABC中,∠BAC = 90°,AB = AC.
(1)如图1,将线段AC绕点A逆时针旋转60°得到AD,连接CD、BD,∠BAC的平分线交BD于点E,连接CE.
①求证:∠AED = ∠CED;
②求证:2CE + AE = BD.
(2)在图2中,若将线段AC绕A顺时针旋转60°得到AD,连接CD、BD,∠BAC的平分线交BD的延长线于点E,连接CE.请补全图形,若CE = 6 + 2√3,求BD的长.(M9223003)
(1)如图1,将线段AC绕点A逆时针旋转60°得到AD,连接CD、BD,∠BAC的平分线交BD于点E,连接CE.
①求证:∠AED = ∠CED;
②求证:2CE + AE = BD.
(2)在图2中,若将线段AC绕A顺时针旋转60°得到AD,连接CD、BD,∠BAC的平分线交BD的延长线于点E,连接CE.请补全图形,若CE = 6 + 2√3,求BD的长.(M9223003)
答案:
解析 (1)证明:①
∵将线段AC绕点A逆时针旋转60°得到AD,
∴AC = AD,∠CAD = 60°,
∴∠BAD = ∠BAC + ∠CAD = 150°,且AB = AC = AD,
∴∠ABD = ∠ADB = 15°,
∵∠BAC = 90°,AB = AC,AE平分∠BAC,
∴∠BAE = ∠CAE = 45°,∠ABC = ∠ACB = 45°,
∵AE = AE,
∴△ABE≌△ACE(SAS),
∴∠ABE = ∠ACE = 15°,BE = CE,
∴∠EBC = ∠ECB = 30°,
∴∠CED = ∠EBC + ∠ECB = 60°,
∵∠AED = ∠ABE + ∠BAE = 60°,
∴∠AED = ∠CED.
②过点A作AH⊥BD于点H,如图:

由①知BE = CE,
∵∠AED = 60°,AH⊥BD,
∴AE = 2EH,
∵AB = AD,AH⊥BD,
∴BD = 2BH,
∵BE + EH = BH,
∴BE + EH = $\frac{1}{2}$BD,
∴2BE + 2EH = BD,
∴2CE + AE = BD.
(2)补全图形如下:

以A为顶点,AE为一边作∠EAF = 60°,AF交DB的延长线于点F,设AE交BC于K,如图,
∵∠BAC = 90°,AB = AC,AE平分∠BAC,
∴∠BAE = ∠CAE = ∠ABC = ∠ACB = 45°,
∴BK = AK = CK.
∵将线段AC绕点A逆时针旋转60°得到AD,
∴AC = AD,∠DAC = 60°,
∴∠DAE = ∠DAC - ∠CAE = 15°,AB = AD,∠BAD = 30°,
∴∠ABD = ∠ADB = 75°,
∴∠AED = ∠ADB - ∠DAE = 60°,
∵AB = AC,∠BAE = ∠CAE,AE = AE,
∴△ABE≌△ACE(SAS),
∴BE = CE = 6 + 2$\sqrt{3}$,
∴AE垂直平分BC,
∴∠BKE = 90°,
∴∠KBE = 30°,
∴KE = $\frac{1}{2}$BE = 3 + $\sqrt{3}$,BK = $\frac{\sqrt{3}}{2}$BE = 3$\sqrt{3}$ + 3 = AK,
∴AE = KE + AK = 6 + 4$\sqrt{3}$.
∵∠EAF = 60°,∠AED = 60°,
∴△AEF是等边三角形,
∴EF = AF = AE = 6 + 4$\sqrt{3}$,
∵AC = AD,∠CAE = ∠DAF = 45°,AE = AF,
∴△CAE≌△DAF(SAS),
∴DF = CE = 6 + 2$\sqrt{3}$,
∴BE = CE = DF = 6 + 2$\sqrt{3}$,
∵DF + BE - EF = BD,
∴BD = 6 + 2$\sqrt{3}$ + 6 + 2$\sqrt{3}$ - (6 + 4$\sqrt{3}$) = 6,
∴BD的长为6.
解析 (1)证明:①
∵将线段AC绕点A逆时针旋转60°得到AD,
∴AC = AD,∠CAD = 60°,
∴∠BAD = ∠BAC + ∠CAD = 150°,且AB = AC = AD,
∴∠ABD = ∠ADB = 15°,
∵∠BAC = 90°,AB = AC,AE平分∠BAC,
∴∠BAE = ∠CAE = 45°,∠ABC = ∠ACB = 45°,
∵AE = AE,
∴△ABE≌△ACE(SAS),
∴∠ABE = ∠ACE = 15°,BE = CE,
∴∠EBC = ∠ECB = 30°,
∴∠CED = ∠EBC + ∠ECB = 60°,
∵∠AED = ∠ABE + ∠BAE = 60°,
∴∠AED = ∠CED.
②过点A作AH⊥BD于点H,如图:
由①知BE = CE,
∵∠AED = 60°,AH⊥BD,
∴AE = 2EH,
∵AB = AD,AH⊥BD,
∴BD = 2BH,
∵BE + EH = BH,
∴BE + EH = $\frac{1}{2}$BD,
∴2BE + 2EH = BD,
∴2CE + AE = BD.
(2)补全图形如下:
以A为顶点,AE为一边作∠EAF = 60°,AF交DB的延长线于点F,设AE交BC于K,如图,
∵∠BAC = 90°,AB = AC,AE平分∠BAC,
∴∠BAE = ∠CAE = ∠ABC = ∠ACB = 45°,
∴BK = AK = CK.
∵将线段AC绕点A逆时针旋转60°得到AD,
∴AC = AD,∠DAC = 60°,
∴∠DAE = ∠DAC - ∠CAE = 15°,AB = AD,∠BAD = 30°,
∴∠ABD = ∠ADB = 75°,
∴∠AED = ∠ADB - ∠DAE = 60°,
∵AB = AC,∠BAE = ∠CAE,AE = AE,
∴△ABE≌△ACE(SAS),
∴BE = CE = 6 + 2$\sqrt{3}$,
∴AE垂直平分BC,
∴∠BKE = 90°,
∴∠KBE = 30°,
∴KE = $\frac{1}{2}$BE = 3 + $\sqrt{3}$,BK = $\frac{\sqrt{3}}{2}$BE = 3$\sqrt{3}$ + 3 = AK,
∴AE = KE + AK = 6 + 4$\sqrt{3}$.
∵∠EAF = 60°,∠AED = 60°,
∴△AEF是等边三角形,
∴EF = AF = AE = 6 + 4$\sqrt{3}$,
∵AC = AD,∠CAE = ∠DAF = 45°,AE = AF,
∴△CAE≌△DAF(SAS),
∴DF = CE = 6 + 2$\sqrt{3}$,
∴BE = CE = DF = 6 + 2$\sqrt{3}$,
∵DF + BE - EF = BD,
∴BD = 6 + 2$\sqrt{3}$ + 6 + 2$\sqrt{3}$ - (6 + 4$\sqrt{3}$) = 6,
∴BD的长为6.
2.如图,点M、N分别在等边△ABC的两边AB、AC所在的直线上,点D为△ABC外一点,且∠MDN = 60°,∠BDC = 120°,BD = CD.
(1)如图1,点M、N分别在边AB、AC上,BM = CN = 2,则MN = ________;
(2)如图2,点M、N分别在边AB、AC上,BM≠CN,试猜想BM、CN、MN之间的数量关系,并加以证明.

(1)如图1,点M、N分别在边AB、AC上,BM = CN = 2,则MN = ________;
(2)如图2,点M、N分别在边AB、AC上,BM≠CN,试猜想BM、CN、MN之间的数量关系,并加以证明.
答案:
解析 (1)4.详解:
∵△ABC是等边三角形,
∴∠ABC = ∠ACB = 60°.
∵∠BDC = 120°,BD = CD,
∴∠DBC = ∠DCB = 30°.
∴∠DBM = ∠DCN = 90°.
在△BDM和△CDN中,$\begin{cases}BD = CD \\ \angle DBM = \angle DCN \\ BM = CN\end{cases}$,
∴△BDM≌△CDN(SAS).
∴∠BDM = ∠CDN,DM = DN.
∵∠MDN = 60°,
∴△DMN是等边三角形,
∠BDM = $\frac{1}{2}$×(120° - 60°) = 30°.
在Rt△BDM中,DM = 2BM = 4,
∵△DMN为等边三角形,
∴MN = DM = 4.
(2)BM + CN = MN.
证明:如图,将△DCN绕点D逆时针旋转120°至△DBP的位置,
则DP = DN,BP = CN,∠DBP = ∠DCN,∠BDP = ∠CDN.由
(1)知∠DBM = ∠DCN = 90°,
∴∠DBP = 90°,
∴∠DBM + ∠DBP = 180°,
∴M、B、P三点共线,
∵∠BDC = 120°,∠MDN = 60°,
∴∠BDM + ∠CDN = 60°,
∴∠BDM + ∠BDP = 60°,即∠PDM = 60°,
∴∠PDM = ∠NDM.
在△PDM和△NDM中,$\begin{cases}DP = DN \\ \angle PDM = \angle NDM \\ DM = DM\end{cases}$,
∴△PDM≌△NDM(SAS),
∴MP = MN.
∵MP = BM + BP = BM + CN,
∴BM + CN = MN.
解析 (1)4.详解:
∵△ABC是等边三角形,
∴∠ABC = ∠ACB = 60°.
∵∠BDC = 120°,BD = CD,
∴∠DBC = ∠DCB = 30°.
∴∠DBM = ∠DCN = 90°.
在△BDM和△CDN中,$\begin{cases}BD = CD \\ \angle DBM = \angle DCN \\ BM = CN\end{cases}$,
∴△BDM≌△CDN(SAS).
∴∠BDM = ∠CDN,DM = DN.
∵∠MDN = 60°,
∴△DMN是等边三角形,
∠BDM = $\frac{1}{2}$×(120° - 60°) = 30°.
在Rt△BDM中,DM = 2BM = 4,
∵△DMN为等边三角形,
∴MN = DM = 4.
(2)BM + CN = MN.
证明:如图,将△DCN绕点D逆时针旋转120°至△DBP的位置,
则DP = DN,BP = CN,∠DBP = ∠DCN,∠BDP = ∠CDN.由
(1)知∠DBM = ∠DCN = 90°,
∴∠DBP = 90°,
∴∠DBM + ∠DBP = 180°,
∴M、B、P三点共线,
∵∠BDC = 120°,∠MDN = 60°,
∴∠BDM + ∠CDN = 60°,
∴∠BDM + ∠BDP = 60°,即∠PDM = 60°,
∴∠PDM = ∠NDM.
在△PDM和△NDM中,$\begin{cases}DP = DN \\ \angle PDM = \angle NDM \\ DM = DM\end{cases}$,
∴△PDM≌△NDM(SAS),
∴MP = MN.
∵MP = BM + BP = BM + CN,
∴BM + CN = MN.
查看更多完整答案,请扫码查看