2025年实验班提优大考卷九年级数学上册苏科版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年实验班提优大考卷九年级数学上册苏科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年实验班提优大考卷九年级数学上册苏科版》

第9页
14.(10分)已知$\odot O$经过四边形$ABCD$的$B$、$D$两点,并与四条边分别交于点$E$、$F$、$G$、$H$,且$\overset{\frown}{EF}=\overset{\frown}{GH}$.
(1)如图(1),连接$BD$,若$BD$是$\odot O$的直径,求证:$\angle A=\angle C$;
(2)如图(2),若$\overset{\frown}{EF}$的度数为$\theta$,$\angle A=\alpha$,$\angle C=\beta$,请直接写出$\theta$、$\alpha$和$\beta$之间的数量关系.!!
答案:
14.
(1)如图
(1),连接$DF$、$DG$.
$\because BD$是$\odot O$的直径,$\therefore \angle DFB=\angle DGB=90^{\circ}$.
$\because EF=GH$,$\therefore \angle EDF=\angle HDG$.
$\because \angle DFB=\angle EDF+\angle A$,$\angle DGB=\angle HDG+\angle C$,
$\therefore \angle A=\angle C$.
12第14题
(2)$\alpha+\beta+\theta=180^{\circ}$.理由如下:
如图
(2),连接$DF$、$BH$.
$\because EF=GH$,$\therefore \angle ADF=\angle HBG=\frac{1}{2}\theta$.
$\because \angle AFD+\angle DFB=180^{\circ}$,$\angle DFB+\angle DHB=180^{\circ}$,
$\therefore \angle AFD=\angle DHB$.
$\because \angle A+\angle ADF+\angle AFD=180^{\circ}$,$\angle AFD=\angle DHB=\angle C+\angle HBG$,$\therefore \angle A+\frac{\theta}{2}+\angle C+\frac{\theta}{2}=180^{\circ}$,
$\therefore \alpha+\beta+\theta=180^{\circ}$.
归纳总结 本题考查圆周角定理、弧、弦与直径的关系、三角形内角和定理、圆内接四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
15.(12分)(2023·北京中考)如图,圆内接四边形$ABCD$的对角线$AC$、$BD$交于点$E$,$BD$平分$\angle ABC$,$\angle BAC=\angle ADB$.

(1)求证:$DB$平分$\angle ADC$,并求$\angle BAD$的大小;
(2)过点$C$作$CF// AD$交$AB$的延长线于点$F$,若$AC=AD$,$BF=2$,求此圆半径的长.!
答案: 15.
(1)$\because \angle BAC=\angle ADB$,$\angle BAC=\angle CDB$,
$\therefore \angle ADB=\angle CDB$,$\therefore BD$平分$\angle ADC$.
$\because BD$平分$\angle ABC$,$\therefore \angle ABD=\angle CBD$.
$\because$四边形$ABCD$是圆内接四边形,
$\therefore \angle ABC+\angle ADC=180^{\circ}$,
$\rightarrow$圆内接四边形对角互补.
$\therefore \angle ABD+\angle CBD+\angle ADB+\angle CDB=180^{\circ}$,
$\therefore 2(\angle ABD+\angle ADB)=180^{\circ}$,
$\therefore \angle ABD+\angle ADB=90^{\circ}$,
$\therefore \angle BAD=180^{\circ}-90^{\circ}=90^{\circ}$.
(2)$\because \angle BAE+\angle DAE=90^{\circ}$,$\angle BAE=\angle ADE$,
$\therefore \angle ADE+\angle DAE=90^{\circ}$,$\therefore \angle AED=90^{\circ}$.
$\because \angle BAD=90^{\circ}$,$\therefore BD$是圆的直径,
$\therefore BD$垂直平分$AC$,$\therefore AD=CD$.
$\because AC=AD$,$\therefore \triangle ACD$是等边三角形,$\therefore \angle ADC=60^{\circ}$.
$\because BD\perp AC$,$\therefore \angle BDC=\frac{1}{2}\angle ADC=30^{\circ}$.
$\because CF// AD$,$\therefore \angle F+\angle BAD=180^{\circ}$,$\therefore \angle F=90^{\circ}$.
$\because$四边形$ABCD$是圆内接四边形,
$\therefore \angle ADC+\angle ABC=180^{\circ}$.
$\because \angle FBC+\angle ABC=180^{\circ}$,$\therefore \angle FBC=\angle ADC=60^{\circ}$,
$\therefore BC=2BF=4$.
$\because \angle BCD=90^{\circ}$,$\angle BDC=30^{\circ}$,$\therefore BC=\frac{1}{2}BD$.
$\because BD$是圆的直径,$\therefore$圆的半径长是4.
16.(14分)如图,在两个同心圆$\odot O$中,大圆的弦$AB$与小圆相交于$C$、$D$两点.
(1)求证:$AC=BD$;
(2)若$AC=2$,$BC=4$,大圆的半径$R=5$,求小圆的半径$r$的值;
(3)若$AC· BC$等于12,请直接写出两圆之间圆环的面积.(结果保留$\pi$)!
答案:
16.
(1)如图,过点$O$作$OE\perp AB$于点$E$.
由垂径定理,得$AE=BE$,$CE=DE$,
$\therefore AE-CE=BE-DE$,$\therefore AC=BD$.
(2)如图,连接$OC$、$OA$.
$\because AC=2$,$BC=4$,
$\therefore AB=AC+BC=2+4=6$,
$\therefore AE=\frac{1}{2}AB=3$,
$\therefore CE=AE-AC=3-2=1$.
在$Rt\triangle AOE$中,由勾股定理,得$OE^{2}=OA^{2}-AE^{2}=5^{2}-3^{2}=16$,在$Rt\triangle COE$中,由勾股定理,得$OC^{2}=CE^{2}+OE^{2}=1+16=17$,
$\therefore OC=\sqrt{17}$,即小圆的半径$r$为$\sqrt{17}$.
(3)圆环的面积为$12\pi$.
第16题

查看更多完整答案,请扫码查看

关闭