第16页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
- 第177页
- 第178页
22.(8分)(2025·南京建邺区期末)如图,$AB$为$\odot O$的直径,点$C$、$D$在$\odot O$上,且点$D$为$\overset{\frown}{BC}$的中点,过点$D$作$DE\perp AC$于点$E$,连接$BD$.
(1)求证:$DE$是$\odot O$的切线;
(2)若$AC = 3$,$BD = \sqrt{5}$,求$DE$的长.

(1)求证:$DE$是$\odot O$的切线;
(2)若$AC = 3$,$BD = \sqrt{5}$,求$DE$的长.
答案:
22.
(1)如图,连接AD.
∵点D为BC的中点,
∴CD = BD,
∴∠CAD = ∠DAB.
∵OA = OD,
∴∠DAB = ∠ODA,
∴∠CAD = ∠ODA,
∴AE//OD.
∵DE⊥AE,
∴DE⊥OD,
∵OD为⊙O的半径,
∴ED是⊙O 的切线.
(2)如图,连接BC交OD于点F.
∵CD = BD,
∴CD = BD,OD⊥BC,
∴CF = BF.
∵AO = OB,
∴$OF = \frac{1}{2}AC = \frac{3}{2},$ 设⊙O的半径为r,
∴$DF = r - \frac{3}{2},$
∵$OB^2 - OF^2 = BD^2 - DF^2,$
∴$r^2 - (\frac{3}{2})^2 = (\sqrt{5})^2 - (r - \frac{3}{2})^2,$ 解得$r = \frac{5}{2}($负值已舍去),
∴$OB = \frac{5}{2},$
∴$BF = \sqrt{OB^2 - OF^2} = 2. $
∵AB为⊙O的直径,
∴∠BCA = ∠BCE = 90°,
∴∠FCE = ∠E = ∠CFD = 90°,
∴四边形DECF是矩形,
∴DE = CF = BF = 2.
22.
(1)如图,连接AD.
∵点D为BC的中点,
∴CD = BD,
∴∠CAD = ∠DAB.
∵OA = OD,
∴∠DAB = ∠ODA,
∴∠CAD = ∠ODA,
∴AE//OD.
∵DE⊥AE,
∴DE⊥OD,
∵OD为⊙O的半径,
∴ED是⊙O 的切线.
(2)如图,连接BC交OD于点F.
∵CD = BD,
∴CD = BD,OD⊥BC,
∴CF = BF.
∵AO = OB,
∴$OF = \frac{1}{2}AC = \frac{3}{2},$ 设⊙O的半径为r,
∴$DF = r - \frac{3}{2},$
∵$OB^2 - OF^2 = BD^2 - DF^2,$
∴$r^2 - (\frac{3}{2})^2 = (\sqrt{5})^2 - (r - \frac{3}{2})^2,$ 解得$r = \frac{5}{2}($负值已舍去),
∴$OB = \frac{5}{2},$
∴$BF = \sqrt{OB^2 - OF^2} = 2. $
∵AB为⊙O的直径,
∴∠BCA = ∠BCE = 90°,
∴∠FCE = ∠E = ∠CFD = 90°,
∴四边形DECF是矩形,
∴DE = CF = BF = 2.
23.(8分)如图,四边形$ABCD$是正方形,点$A$、$B$在$\odot O$上,边$DA$的延长线交$\odot O$于点$E$,对角线$DB$的延长线交$\odot O$于点$F$,连接$EF$并延长至点$G$,使$\angle FBG = \angle FAB$.
(1)求证:$BG$与$\odot O$相切;
(2)若$\odot O$的半径为1,求$AF$的长.

(1)求证:$BG$与$\odot O$相切;
(2)若$\odot O$的半径为1,求$AF$的长.
答案:
23.
(1)如图,连接BE.
∵四边形ABCD是正方形,
∴∠BAE = 90°,
∴∠BAF + ∠EAF = 90°,∠EAF = ∠EBF,∠FBG = ∠FAB,
∴∠FBG + ∠EBF = 90°,
∴∠OBG = 90°.又BE为直径,
∴BG与⊙O相切.
(2)如图,连接OA、OF.
∵四边形ABCD是正方形,BE是圆的直径,
∴∠EFD = 90°,∠FDE = 45°,
∴∠FED = 45°,
∵OA = OF = 1,
∴$AF^2 = AO^2 + FO^2 = 1 + 1 = 2,$
∴$AF = \sqrt{2}($负值已舍去).
23.
(1)如图,连接BE.
∵四边形ABCD是正方形,
∴∠BAE = 90°,
∴∠BAF + ∠EAF = 90°,∠EAF = ∠EBF,∠FBG = ∠FAB,
∴∠FBG + ∠EBF = 90°,
∴∠OBG = 90°.又BE为直径,
∴BG与⊙O相切.
(2)如图,连接OA、OF.
∵四边形ABCD是正方形,BE是圆的直径,
∴∠EFD = 90°,∠FDE = 45°,
∴∠FED = 45°,
∵OA = OF = 1,
∴$AF^2 = AO^2 + FO^2 = 1 + 1 = 2,$
∴$AF = \sqrt{2}($负值已舍去).
24.(8分)(2024·自贡中考)在$Rt\triangle ABC$中,$\angle C = 90^{\circ}$,$\odot O$是$\triangle ABC$的内切圆,切点分别为$D$、$E$、$F$.
(1)图(1)中三组相等的线段分别是$CE = CF$,$AF =$
(2)如图(2),延长$AC$到点$M$,使$AM = AB$,过点$M$作$MN\perp AB$于点$N$.求证:$MN$是$\odot O$的切线.

(1)图(1)中三组相等的线段分别是$CE = CF$,$AF =$
AD
,$BD =$BE
;若$AC = 3$,$BC = 4$,则$\odot O$半径长为1
;(2)如图(2),延长$AC$到点$M$,使$AM = AB$,过点$M$作$MN\perp AB$于点$N$.求证:$MN$是$\odot O$的切线.
答案:
24.
(1)AD BE 1 [解析]连接OE、OF,如图
(1). 由切线长定理可知,AF = AD,BD = BE,
∵∠C = 90°,⊙O是△ABC的内切圆,
∴∠C = ∠OEC = ∠OFC = 90°,OE = OF,
∴四边形OECF是正方形. 设OE = OF = CE = CF = x,则BE = BC - CE = 4 - x = BD,AF = AC - CF = 3 - x = AD.
∵$BD + AD = AB = \sqrt{AC^2 + BC^2} = \sqrt{3^2 + 4^2} = 5,$
∴4 - x + 3 - x = 5,解得x = 1,
∴OE = 1,即⊙O半径长为1.

(2)过点O作OH⊥MN于点H,连接OD、OE、OF,如图
(2).
∵∠ANM = 90° = ∠ACB,∠A = ∠A,AM = AB,
∴△AMN≅△ABC(AAS),
∴AN = AC.
∵AD = AF,
∴AN - AD = AC - AF,即DN = CF. 同
(1)可知,CF = OE,
∴DN = OE.
∵∠ANM = 90° = ∠ODN = ∠OHN,
∴四边形OHND是矩形,
∴OH = DN,
∴OH = OE,即OH是⊙O的半径.
∵OH⊥MN,
∴MN是⊙O的切线.
24.
(1)AD BE 1 [解析]连接OE、OF,如图
(1). 由切线长定理可知,AF = AD,BD = BE,
∵∠C = 90°,⊙O是△ABC的内切圆,
∴∠C = ∠OEC = ∠OFC = 90°,OE = OF,
∴四边形OECF是正方形. 设OE = OF = CE = CF = x,则BE = BC - CE = 4 - x = BD,AF = AC - CF = 3 - x = AD.
∵$BD + AD = AB = \sqrt{AC^2 + BC^2} = \sqrt{3^2 + 4^2} = 5,$
∴4 - x + 3 - x = 5,解得x = 1,
∴OE = 1,即⊙O半径长为1.
(2)过点O作OH⊥MN于点H,连接OD、OE、OF,如图
(2).
∵∠ANM = 90° = ∠ACB,∠A = ∠A,AM = AB,
∴△AMN≅△ABC(AAS),
∴AN = AC.
∵AD = AF,
∴AN - AD = AC - AF,即DN = CF. 同
(1)可知,CF = OE,
∴DN = OE.
∵∠ANM = 90° = ∠ODN = ∠OHN,
∴四边形OHND是矩形,
∴OH = DN,
∴OH = OE,即OH是⊙O的半径.
∵OH⊥MN,
∴MN是⊙O的切线.
查看更多完整答案,请扫码查看