2025年书立方跟踪测试卷八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年书立方跟踪测试卷八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年书立方跟踪测试卷八年级数学上册人教版》

18. (6 分)已知$x^2 + xy = 12$,$xy + y^2 = 15$,求$(x + y)^2 - (x + y)(x - y)$的值.
答案: 18.解:
∵$x^{2} + xy = 12,$$xy + y^{2} = 15,$
∴$x^{2} + 2xy + y^{2} = 27,$$x^{2} - y^{2} = -3,$
∴$(x + y)^{2} = 27,$(x + y)(x - y) = -3,
∴$(x + y)^{2} - (x + y)(x - y)$
= 27 - (-3) = 30,
∴$(x + y)^{2} - (x + y)(x - y)$的值为30.
19. (6 分)分解因式:$(2m + n)(2m - 3n) + 8m(-n - 2m)$.
答案: 19.解:原式 = (2m + n)(2m - 3n) - 8m(2m + n)
= (2m + n)(2m - 3n - 8m)
= (2m + n)(-6m - 3n)
$= -3(2m + n)^{2}.$
20. (7 分)将长方形$ABCD$及长方形$CEFG$按照如图方式放置,其中点$E$、$G$分别在边$CD$、$BC$上,连接$BD$、$BF$、$DF$、$EG$.已知$2x + y = 8$,$xy = 4$,求图中阴影部分的面积.(注:图中$AB = 2x$,$BC = 8x$,$CE = y$,$CG = 4y$)
答案: 20.解:
∵$S_{\triangle EFG} = \frac{1}{2}×4y×y = 2y^{2},$
$S_{\triangle BDC} = \frac{1}{2}×2x×8x = 8x^{2},$
$S_{\triangle DEF} = \frac{1}{2}×(2x - y)×4y = 4xy - 2y^{2},$
$S_{\triangle BGF} = \frac{1}{2}×(8x - 4y)×y = 4xy - 2y^{2},$
$S_{四边形FGCE} = 4y^{2},$
∴$S_{\triangle DBF} = S_{\triangle BCD} - S_{\triangle DEF} - S_{\triangle BGF} - S_{长方形FGCE},$
∴$S_{\triangle DBF} = 8x^{2} - (4xy - 2y^{2}) - (4xy - 2y^{2}) - 4y^{2},$
∴$S_{\triangle DBF} = 8x^{2} - 8xy,$
∴阴影部分的面积为:
$8x^{2} - 8xy + 2y^{2}$
$= 2(4x^{2} + 4xy + y^{2} - 8xy)$
$= 2[(2x + y)^{2} - 8xy],$
∵2x + y = 8,xy = 4,
∴阴影部分的面积为$2×(8^{2} - 8×4) = 64.$

查看更多完整答案,请扫码查看

关闭