2025年点拨训练七年级数学下册华师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年点拨训练七年级数学下册华师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年点拨训练七年级数学下册华师大版》

10.(易错题)下列说法正确的是 ( )
①三角形的角平分线是射线;
②三角形的三条角平分线都在三角形内部,且相交于一点;
③三角形的三条高都在三角形内部;
④三角形的一条中线把该三角形分成面积相等的两部分.
A. ①②
B. ②③
C. ②④
D. ③④
答案: C
11.(中考趋势题)嘉淇拿一个锐角三角形ABC做折纸游戏,折叠方法如图①②③所示,折痕与BC交于点D,连结AD,则线段AD分别是△ABC的 ( )

A. 高,中线,角平分线
B. 高,角平分线,中线
C. 角平分线,高,中线
D. 中线,角平分线,高
答案: B
12. 若线段AO和线段BO分别是△MNO的边MN上的中线和高,则下列判断正确的是 ( )
A. AO>BO
B. AO≥BO
C. AO<BO
D. AO≤BO
答案: B
13. [2024·郑州期中] 如图,E是△ABC的中线AD的中点,若△ABC的面积为12,则△CDE的面积为______.
答案: 3
14.(易错题)在△ABC中,AE是角平分线,AD是边BC上的高,∠EAD = 30°,∠DAC = 10°,则∠BAC的度数为______.
答案:
$40^{\circ}$或$80^{\circ}$ 点拨:如图①,当$AD$在$\triangle ABC$内部时,
  $\because\angle EAD = 30^{\circ},\angle DAC = 10^{\circ}$,$\therefore\angle CAE = 30^{\circ}+10^{\circ}=40^{\circ}$.
  $\because AE$是角平分线,$\therefore\angle BAC = 2\angle CAE = 80^{\circ}$;
  CD
如图②,当$AD$在$\triangle ABC$外部时,$\because\angle EAD = 30^{\circ}$,$\angle DAC = 10^{\circ}$,$\therefore\angle CAE = 30^{\circ}-10^{\circ}=20^{\circ}$,$\because AE$是角平分线,$\therefore\angle BAC = 2\angle CAE = 40^{\circ}$.
 综上,$\angle BAC$的度数为$40^{\circ}$或$80^{\circ}$.
15. [2024·洛阳西工区期中] 如图,CD,CE分别是△ABC的高和中线,且AC = 7 cm,BC = 24 cm,AB = 25 cm,∠ACB = 90°.
(1)求CD的长;
(2)求△BCE与△ACE的周长差.
答案: 解:
(1)$\because\angle ACB = 90^{\circ},CD$是边$AB$上的高,
  $\therefore S_{\triangle ABC}=\frac{1}{2}AC\cdot BC=\frac{1}{2}AB\cdot CD$,
  $\therefore CD=\frac{AC\cdot BC}{AB}=\frac{168}{25}\text{ cm}$.
(2)$\because CE$为$\triangle ABC$的中线,
  $\therefore AE = BE$,
  $\therefore\triangle BCE$的周长$-\triangle ACE$的周长$=(BC + CE + BE)-(AC + CE + AE)=BC - AC = 24 - 7 = 17(\text{cm})$,
  即$\triangle BCE$与$\triangle ACE$的周长差是17 cm.
16. [推理能力] 如图,在△ABC中,AB = 10 cm,AC = 6 cm,D是边BC的中点,点E在边AB上,△BDE与四边形ACDE的周长相等.
(1)求线段AE的长;
(2)若图中所有线段长度的和是53 cm,求BC + $\frac{1}{2}$DE的长.
答案: 解:
(1)$\because\triangle BDE$与四边形$ACDE$的周长相等,
 $\therefore BD + DE + BE = AC + AE + CD + DE$.
  $\because D$是$BC$的中点,$\therefore BD = DC$,$\therefore BE = AE + AC$.
 设$AE = x\text{ cm}$,则$BE=(10 - x)\text{ cm}$,
  $\therefore10 - x = x + 6$,解得$x = 2$,$\therefore AE = 2\text{ cm}$.
(2)图中共有8条线段,由题意得$AE + EB + AB + AC + DE + BD + CD + BC = 2AB + AC + 2BC + DE = 53\text{ cm}$.
 $\because AB = 10\text{ cm},AC = 6\text{ cm}$,$\therefore2BC + DE = 27\text{ cm}$,
 $\therefore BC+\frac{1}{2}DE=\frac{27}{2}\text{ cm}$.

查看更多完整答案,请扫码查看

关闭