2025年海淀单元测试AB卷七年级数学下册鲁教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年海淀单元测试AB卷七年级数学下册鲁教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第84页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
$7. $乐乐观察$“$抖空竹$”$时发现,可以将某一时刻的情形抽象成数学问题$:$如图,已知$AB//CD,$$∠BAE = 92°,$$∠DCE = 121°,$则$∠AEC$的度数是$( )$
$ $
$A. 30° B. 29° C. 28° D. 27°$
$ $
$ $
$A. 30° B. 29° C. 28° D. 27°$
$ $
答案:
B
$8. $如图,$AB//CD,$$∠AEP = 50°,$$∠PFC = 120°,$$∠PEA$和$∠PFC$的平分线交于点$G,$则$∠EGF$的度数为$__________.$
$ $
$ $
答案:
35° [解析]如图所示,
∵EG是∠PEA的平分线,FG是∠PFC的平分线,
∴∠AEG = $\frac{1}{2}$∠AEP = 25°,∠GFC = $\frac{1}{2}$∠PFC = 60°. 过点G作GM//AB,则∠MGE = ∠AEG = 25°.
∵AB//CD,
∴GM//CD,
∴∠GFC = ∠MGF = 60°,
∴∠EGF = ∠MGF - ∠MGE = 60° - 25° = 35°.
35° [解析]如图所示,
∵EG是∠PEA的平分线,FG是∠PFC的平分线,
∴∠AEG = $\frac{1}{2}$∠AEP = 25°,∠GFC = $\frac{1}{2}$∠PFC = 60°. 过点G作GM//AB,则∠MGE = ∠AEG = 25°.
∵AB//CD,
∴GM//CD,
∴∠GFC = ∠MGF = 60°,
∴∠EGF = ∠MGF - ∠MGE = 60° - 25° = 35°.
$9. ($济宁微山期中$)$已知,$AB//DE,$点$C$在$AB$上方,连接$BC,$$CD.$
$ (1)$如图$①,$求证$:∠BCD + ∠CDE = ∠ABC.$
$ (2)$如图$②,$过点$C$作$CF⊥BC$交$ED$的延长线于点$F,$探究$∠ABC$和$∠F$之间的数量关系$.$
$ (3)$如图$③,$在$(2)$的条件下,$∠CFD$的平分线交$CD$于点$G,$连接$GB$并延长至点$H,$若$BH$平分$∠ABC,$求$∠BGD - ∠CGF$的值$.$
$ $
$ (1)$如图$①,$求证$:∠BCD + ∠CDE = ∠ABC.$
$ (2)$如图$②,$过点$C$作$CF⊥BC$交$ED$的延长线于点$F,$探究$∠ABC$和$∠F$之间的数量关系$.$
$ (3)$如图$③,$在$(2)$的条件下,$∠CFD$的平分线交$CD$于点$G,$连接$GB$并延长至点$H,$若$BH$平分$∠ABC,$求$∠BGD - ∠CGF$的值$.$
$ $
答案:
(1)证明:过点C作CM//AB,如图①,
∴∠ABC = ∠BCM.
∵AB//DE,
∴CM//DE,∠CDE = ∠DCM.
∵∠BCM = ∠BCD + ∠DCM,
∴∠BCD + ∠CDE = ∠ABC.
(2)解:过点C作CN//AB,如图②,
∴∠ABC = ∠BCN.
∵AB//DE,
∴CN//EF,
∴∠F = ∠FCN.
∵∠BCN - ∠BCF = ∠FCN,
∴∠ABC = ∠BCF + ∠F.
∵CF⊥BC,
∴∠BCF = 90°,
∴∠ABC = 90° + ∠F,即∠ABC - ∠F = 90°.
(3)解:延长HG交EF于点Q,过点G作GP//EF,如图③,
∴∠BGD = ∠CGQ.
∵AB//DE,
∴∠ABH = ∠EQG.
∵GP//EF,
∴∠EQG = ∠PGQ,∠EFG = ∠PGF,
∴∠PGQ = ∠ABH,
∴∠BGD - ∠CGF = ∠CGQ - ∠CGF = ∠FGQ.
∵∠FGQ = ∠PGQ - ∠PGF,
∴∠FGQ = ∠ABH - ∠EFG.
∵BH平分∠ABC,FG平分∠CFD,
∴∠ABH = $\frac{1}{2}$∠ABC,∠EFG = $\frac{1}{2}$∠CFD,
∴∠FGQ = $\frac{1}{2}$∠ABC - $\frac{1}{2}$∠CFD = $\frac{1}{2}$(∠ABC - ∠CFD),由
(2)可得∠ABC - ∠CFD = 90°,
∴∠FGQ = $\frac{1}{2}$×90° = 45°,即∠BGD - ∠CGF = 45°.
(1)证明:过点C作CM//AB,如图①,
∴∠ABC = ∠BCM.
∵AB//DE,
∴CM//DE,∠CDE = ∠DCM.
∵∠BCM = ∠BCD + ∠DCM,
∴∠BCD + ∠CDE = ∠ABC.
(2)解:过点C作CN//AB,如图②,
∴∠ABC = ∠BCN.
∵AB//DE,
∴CN//EF,
∴∠F = ∠FCN.
∵∠BCN - ∠BCF = ∠FCN,
∴∠ABC = ∠BCF + ∠F.
∵CF⊥BC,
∴∠BCF = 90°,
∴∠ABC = 90° + ∠F,即∠ABC - ∠F = 90°.
(3)解:延长HG交EF于点Q,过点G作GP//EF,如图③,
∴∠BGD = ∠CGQ.
∵AB//DE,
∴∠ABH = ∠EQG.
∵GP//EF,
∴∠EQG = ∠PGQ,∠EFG = ∠PGF,
∴∠PGQ = ∠ABH,
∴∠BGD - ∠CGF = ∠CGQ - ∠CGF = ∠FGQ.
∵∠FGQ = ∠PGQ - ∠PGF,
∴∠FGQ = ∠ABH - ∠EFG.
∵BH平分∠ABC,FG平分∠CFD,
∴∠ABH = $\frac{1}{2}$∠ABC,∠EFG = $\frac{1}{2}$∠CFD,
∴∠FGQ = $\frac{1}{2}$∠ABC - $\frac{1}{2}$∠CFD = $\frac{1}{2}$(∠ABC - ∠CFD),由
(2)可得∠ABC - ∠CFD = 90°,
∴∠FGQ = $\frac{1}{2}$×90° = 45°,即∠BGD - ∠CGF = 45°.
查看更多完整答案,请扫码查看