第27页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
11. 分类讨论思想 若$\vert x\vert =3$,$\vert y\vert =4$,$\vert x+y\vert =-x-y$,则$x-y$的值为(
A.±1或±7
B.-1或7
C.-1或-7
D.1或7
D
)A.±1或±7
B.-1或7
C.-1或-7
D.1或7
答案:
D
12. 中考新趋势数形结合法 如图,半径为1的圆在数轴上滚动,开始在数轴上点A(称圆与数轴的切点)处,向左滚动一周至点B处,若点A对应的数是3,则点B对应的数是(

A.$3-\pi$
B.$2\pi -3$
C.$\pi -3$
D.$3-2\pi$
D
)A.$3-\pi$
B.$2\pi -3$
C.$\pi -3$
D.$3-2\pi$
答案:
D
13. 错中求解问题 某同学在计算$-3\frac{3}{4}-N$时,误将-N看成了+N,从而算的结果是$5\frac{1}{4}$,请你帮助算出正确结果。
答案:
解:$N=5\frac{1}{4}-(-3\frac{3}{4})=9$,$-3\frac{3}{4}-9=-12\frac{3}{4}$.
14. 在一条不完整的数轴上,有A,P两点,其中点A表示数-3,设点P表示的数为m,点A,点P表示的数的和为n。
(1)若m= 2,求n的值;
(2)当PA= 4时,求m的值。
(1)若m= 2,求n的值;
(2)当PA= 4时,求m的值。
答案:
解:
(1)因为点A表示数-3,m=2,所以n=2+(-3)=-1;
(2)因为点A表示数-3,PA=4,所以当点P在点A的右侧时,点P表示的数m=-3+4=1;当点P在点A的左侧时,点P表示的数m=-3-4=-7.综上所述,m的值为1或-7.
(1)因为点A表示数-3,m=2,所以n=2+(-3)=-1;
(2)因为点A表示数-3,PA=4,所以当点P在点A的右侧时,点P表示的数m=-3+4=1;当点P在点A的左侧时,点P表示的数m=-3-4=-7.综上所述,m的值为1或-7.
15. 数形结合思想 如图,在一条不完整的数轴上从左到右有A,B,C三点,其代表的数分别为a,b,c,其中点A,B之间的距离是3,点B,C之间的距离是2。设$a-b-c= m$。
(1)若以点B为原点,点A表示的数是
(2)若以点C为原点,求m的值;
(3)若点A表示的数是-8,则m的值是多少?

(2)因为以点C为原点,所以点C所对应的数为0,所以点B对应的数为0-2=-2,点A所对应的数是0-(3+2)=-5,所以m=a-b-c=-5-(-2)-0=-3;
(3)若点A表示的数是-8,则点B表示的数为-8+3=-5,点C表示的数为-5+2=-3,所以m=a-b-c=-8-(-5)-(-3)=0.
(1)若以点B为原点,点A表示的数是
-3
,点C表示的数是2
;(2)若以点C为原点,求m的值;
(3)若点A表示的数是-8,则m的值是多少?
(2)因为以点C为原点,所以点C所对应的数为0,所以点B对应的数为0-2=-2,点A所对应的数是0-(3+2)=-5,所以m=a-b-c=-5-(-2)-0=-3;
(3)若点A表示的数是-8,则点B表示的数为-8+3=-5,点C表示的数为-5+2=-3,所以m=a-b-c=-8-(-5)-(-3)=0.
答案:
解:
(1)-3 2
(2)因为以点C为原点,所以点C所对应的数为0,所以点B对应的数为0-2=-2,点A所对应的数是0-(3+2)=-5,所以m=a-b-c=-5-(-2)-0=-3;
(3)若点A表示的数是-8,则点B表示的数为-8+3=-5,点C表示的数为-5+2=-3,所以m=a-b-c=-8-(-5)-(-3)=0.
(1)-3 2
(2)因为以点C为原点,所以点C所对应的数为0,所以点B对应的数为0-2=-2,点A所对应的数是0-(3+2)=-5,所以m=a-b-c=-5-(-2)-0=-3;
(3)若点A表示的数是-8,则点B表示的数为-8+3=-5,点C表示的数为-5+2=-3,所以m=a-b-c=-8-(-5)-(-3)=0.
16. 探究创新运算能力 已知A,B两点在数轴上表示的数分别为m,n。
(1)对照数轴填写下表:

(2)若A,B两点间的距离记为d,试问d与m,n有何数量关系?并用文字描述出来;
(3)已知A,B两点在数轴上表示的数分别为x和-1,则A,B两点间的距离d可表示为______,如果d= 3,求x的值。
(1)对照数轴填写下表:
(2)若A,B两点间的距离记为d,试问d与m,n有何数量关系?并用文字描述出来;
(3)已知A,B两点在数轴上表示的数分别为x和-1,则A,B两点间的距离d可表示为______,如果d= 3,求x的值。
答案:
解:
(1)填表如下:

(2)由
(1)问可以得到d=|m-n|,数轴上两个点之间的距离等于这两个点表示的数的差的绝对值;
(3)|x-(-1)| 当d=3时,|x-(-1)|=3,所以x=2或x=-4.
解:
(1)填表如下:
(2)由
(1)问可以得到d=|m-n|,数轴上两个点之间的距离等于这两个点表示的数的差的绝对值;
(3)|x-(-1)| 当d=3时,|x-(-1)|=3,所以x=2或x=-4.
查看更多完整答案,请扫码查看