第111页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
8. 9人14天完成了一项工作的$\frac{3}{5}$,而余下的工作要在4天内完成,则需增加(
A.11人
B.12人
C.13人
D.14人
B
)A.11人
B.12人
C.13人
D.14人
答案:
B
9. 某窑瓷器工厂烧制青瓷茶具,每套茶具由1个茶壶和6只茶杯组成,用$1\ kg$瓷泥可做3个茶壶或9只茶杯,现要用$6\ kg$瓷泥制作这些茶具,用
2
$kg$瓷泥做茶壶时,恰好使制作的茶壶和茶杯配套。
答案:
2
10. 拼接一套书柜,由一个人做要$30\ h$完成.现计划由一部分人先做$1\ h$,然后增加6人与他们一起做$3\ h$,完成这项工作.假设这些人的工作效率相同,应先安排
3
人工作。
答案:
3
11. 模型观念 机械厂加工车间有27名工人,平均每人每天加工小齿轮12个或大齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大、小齿轮刚好配套?
答案:
解:设需安排x名工人加工大齿轮,则安排(27-x)名工人加工小齿轮.依题意得$12×\frac{(27-x)}{3}=\frac{10x}{2}$,解得x=12,则27-x=15.答:安排12名工人加工大齿轮,15名工人加工小齿轮.
12. 某建筑工地计划租用甲、乙两辆车清理建筑垃圾,已知甲车单独运完需要15天,乙车单独运完需要30天.甲车先运了3天,然后甲、乙两车合作运完剩下的垃圾.
(1)甲、乙两车需要合作多少天才能运完垃圾?
(2)已知甲车每天的租金比乙车多100元,运完垃圾后建筑工地共需支付租金3950元.则甲、乙车每天的租金分别为多少元?
(1)甲、乙两车需要合作多少天才能运完垃圾?
(2)已知甲车每天的租金比乙车多100元,运完垃圾后建筑工地共需支付租金3950元.则甲、乙车每天的租金分别为多少元?
答案:
解:
(1)设甲、乙两车需要合作x天才能运完垃圾,依题意,得$\frac{x+3}{15}+\frac{x}{30}=$1,解得x=8.答:甲、乙两车还需要合作8天才能运完垃圾;
(2)设乙车每天的租金为y元,则甲车每天的租金为(y+100)元,依题意,得(8+3)(y+100)+8y=3950,解得y=150,所以y+100=250.答:甲车每天的租金为250元,乙车每天的租金为150元.
(1)设甲、乙两车需要合作x天才能运完垃圾,依题意,得$\frac{x+3}{15}+\frac{x}{30}=$1,解得x=8.答:甲、乙两车还需要合作8天才能运完垃圾;
(2)设乙车每天的租金为y元,则甲车每天的租金为(y+100)元,依题意,得(8+3)(y+100)+8y=3950,解得y=150,所以y+100=250.答:甲车每天的租金为250元,乙车每天的租金为150元.
13. 运算能力 为加强新农村建设,某地方政府准备在甲村和乙村之间修建一条公路.已知A工程队单独完成此工程需要5个月,B工程队单独完成此工程需要10个月.若A,B两工程队合作2个月后,再由B工程队单独完成剩余部分,则B工程队还需要几个月才能完成?
答案:
解:设B工程队还需要x个月才能完成,根据题意得$\frac{2}{5}+\frac{2+x}{10}=1$,解得x=4,答:B工程队还需要4个月才能完成.
14. 真实问题情境 应用意识 某家具厂专业生产学生座椅,其中每把学生座椅由4条椅腿、4根撑杆、2个扶手、1个椅面和1个靠背组成.根据实际生产能力,每名工人每天能够生产椅腿20条,或撑杆40根,或扶手30个,或椅面30个,或靠背30个.
(1)若安排35名工人专门生产椅腿和椅面,那么应该安排多少人生产椅腿,才能使每天生产出的椅腿和椅面正好配套?
(2)若安排全厂91名工人生产这种学生座椅,那么应该安排多少人生产椅腿,才能使每天生产出的椅腿、撑杆、扶手、椅面和靠背正好配套?
(1)若安排35名工人专门生产椅腿和椅面,那么应该安排多少人生产椅腿,才能使每天生产出的椅腿和椅面正好配套?
(2)若安排全厂91名工人生产这种学生座椅,那么应该安排多少人生产椅腿,才能使每天生产出的椅腿、撑杆、扶手、椅面和靠背正好配套?
答案:
解:
(1)设应安排x人生产椅腿,才能使每天生产出的椅腿和椅面正好配套.20x=4×30(35-x),解得x=30,答:应安排30人生产椅腿,才能使每天生产出的椅腿和椅面正好配套;
(2)设应安排生产椅腿的人数为x,撑杆的人数为y,扶手的人数为m,椅面的人数为n,靠背的人数为z,才能使每天生产出的椅腿、撑杆、扶手、靠背和椅面正好配套.所以20x=40y,20x=2×30m,20x=4×30n,20x=4×30z,解得$y=\frac{1}{2}x$,$m=\frac{1}{3}x$,$n=\frac{1}{6}x$,$z=\frac{1}{6}x$.所以$\frac{1}{2}x+\frac{1}{3}x+\frac{1}{6}x+\frac{1}{6}x+x=91$,解得x=42.答:应该安排42人生产椅腿,才能使每天生产出的椅腿、撑杆、扶手、椅面和靠背正好配套.
(1)设应安排x人生产椅腿,才能使每天生产出的椅腿和椅面正好配套.20x=4×30(35-x),解得x=30,答:应安排30人生产椅腿,才能使每天生产出的椅腿和椅面正好配套;
(2)设应安排生产椅腿的人数为x,撑杆的人数为y,扶手的人数为m,椅面的人数为n,靠背的人数为z,才能使每天生产出的椅腿、撑杆、扶手、靠背和椅面正好配套.所以20x=40y,20x=2×30m,20x=4×30n,20x=4×30z,解得$y=\frac{1}{2}x$,$m=\frac{1}{3}x$,$n=\frac{1}{6}x$,$z=\frac{1}{6}x$.所以$\frac{1}{2}x+\frac{1}{3}x+\frac{1}{6}x+\frac{1}{6}x+x=91$,解得x=42.答:应该安排42人生产椅腿,才能使每天生产出的椅腿、撑杆、扶手、椅面和靠背正好配套.
查看更多完整答案,请扫码查看