第112页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
5.3 由国家统计局 2023 年 12 月 11 日发布我国粮食生产情况如下:
2023 年全国粮食播种面积 17.85 亿亩,比 2022 年增长 $ 0.5\% $. 全国粮食平均亩产 390 kg,比 2022 年增长 $ 0.8\% $. 根据上面的数据解答下列问题(结果取整数):
(1)2023 年全国粮食总产量是多少万吨?
(2)2023 年末,全国人口为 140 967 万人,请用以上数据计算,2023 年人均粮食占有量约为多少千克?
(3)请你用一元一次方程求出 2023 年比 2022 年粮食总产量增加了约多少万吨.
2023 年全国粮食播种面积 17.85 亿亩,比 2022 年增长 $ 0.5\% $. 全国粮食平均亩产 390 kg,比 2022 年增长 $ 0.8\% $. 根据上面的数据解答下列问题(结果取整数):
(1)2023 年全国粮食总产量是多少万吨?
(2)2023 年末,全国人口为 140 967 万人,请用以上数据计算,2023 年人均粮食占有量约为多少千克?
(3)请你用一元一次方程求出 2023 年比 2022 年粮食总产量增加了约多少万吨.
答案:
(1)17.85亿亩=1.785×10⁹亩,1.785×10⁹×390=6.9615×10¹¹(kg)=69615(万吨).
故2023年全国粮食产量是69615万吨.
(2)69615×10³÷140967≈494(kg).
故2023年人均粮食占有量约为494kg.
(3)设2022年全国粮食播种面积为x亿亩,全国粮食平均亩产为y kg,
则有(1+0.5%)x=17.85,(1+0.8%)y=390,
解得x≈17.76,y≈386.90.
17.76亿亩=1.776×10⁹亩,1.776×10⁹×386.90≈6.8713×10¹¹(kg)=68713(万吨).69615-68713=902(万吨).
故2023年比2022年粮食总产量增加了约902万吨.
故2023年全国粮食产量是69615万吨.
(2)69615×10³÷140967≈494(kg).
故2023年人均粮食占有量约为494kg.
(3)设2022年全国粮食播种面积为x亿亩,全国粮食平均亩产为y kg,
则有(1+0.5%)x=17.85,(1+0.8%)y=390,
解得x≈17.76,y≈386.90.
17.76亿亩=1.776×10⁹亩,1.776×10⁹×386.90≈6.8713×10¹¹(kg)=68713(万吨).69615-68713=902(万吨).
故2023年比2022年粮食总产量增加了约902万吨.
1. 某种商品的进货价为每件 $ a $ 元,零售价为每件 90 元,若商品按八五折出售,仍可获利 $ 10\% $,则下列方程正确的是( ).
A.$ 85\%a = 10\% × 90 $
B.$ 90 × 85\% × 10\% = a $
C.$ 85\%(90 - a) = 10\% $
D.$ (1 + 10\%)a = 90 × 85\% $
A.$ 85\%a = 10\% × 90 $
B.$ 90 × 85\% × 10\% = a $
C.$ 85\%(90 - a) = 10\% $
D.$ (1 + 10\%)a = 90 × 85\% $
答案:
D
2. 某足球比赛计分规则:胜一场得 3 分,平一场得 1 分,负一场得 0 分. 某足球队经过 26 轮激战,以 42 分获比赛第五名,其中负 6 场,那么胜场数为( ).
A.9
B.10
C.11
D.12
A.9
B.10
C.11
D.12
答案:
C
3. 一份试卷由 50 道选择题组成,每道题选对得 3 分,不选、错选一题均扣 1 分. 小亮在这次考试中得了 102 分,则他答对了______道题.
答案:
38
4. 有一旅客携带 35 kg 行李从 A 地到 B 地,按民航规定,旅客最多可免费携带 20 kg 行李,超过部分每千克按飞机票价的 $ 1.5\% $ 购买行李票. 已知该旅客购买的行李票为 198 元,则他的飞机票价为______元.
答案:
880
5. 《孙子算经》是中国重要的数学著作之一,其中记载的“荡杯问题”很有趣. 其记载“今有妇人河上荡杯. 津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”后部分的译文:“2 人同吃一碗饭,3 人同吃一碗羹,4 人同吃一碗肉,共用 65 个碗,则有多少客人?”设有客人 $ x $ 人,可列方程为______.
答案:
(1/2)x+(1/3)x+(1/4)x=65
6. (甘肃陇南期末)某服装厂计划生产一批学生服装,已知每 3 m 长的布料可做 2 件上衣或 3 条裤子,一件上衣和一条裤子为一套,现仓库内存有这样的布料 600 m,若全部用来做这种学生服装,应分别用多少米布料做上衣和裤子,能恰好配套?
答案:
解:设用x m布料做上衣,则用(600-x)m布料做裤子.
由题意得(2x)/3=(3(600-x))/3,
解得x=360.
因此600-x=240.
故用360 m布料做上衣,用240 m布料做裤子,能恰好配套.
由题意得(2x)/3=(3(600-x))/3,
解得x=360.
因此600-x=240.
故用360 m布料做上衣,用240 m布料做裤子,能恰好配套.
查看更多完整答案,请扫码查看