2025年初中同步练习册分层卷九年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年初中同步练习册分层卷九年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年初中同步练习册分层卷九年级数学上册人教版》

1. (3 分)(2025·滨州滨城区期中)我们解一元二次方程 $ x^{2}-1= 0 $ 时,可以运用因式分解法,将此方程化为 $ (x - 1)(x + 1)= 0 $,得到两个一元一次方程:$ x - 1= 0 $,$ x + 1= 0 $。从而得到原方程的解为 $ x_{1}= 1 $,$ x_{2}= -1 $。这种解法体现的数学思想是(
D
)
A.公理化思想
B.模型思想
C.函数思想
D.转化思想
答案: D
2. (3 分)用因式分解法解一元二次方程 $ 3x(x - 1)= 2x - 2 $,因式分解后,结果正确的是(
B
)
A.$ (x - 1)(3x + 2)= 0 $
B.$ (x - 1)(3x - 2)= 0 $
C.$ 3x(x - 2)= 0 $
D.$ 3x(x + 2)= 0 $
答案: B
3. (3 分)若关于 $ x $ 的一元二次方程的根分别为 $ -5 $,$ 7 $,则该方程可以为(
A
)
A.$ (x + 5)(x - 7)= 0 $
B.$ (x - 5)(x + 7)= 0 $
C.$ (x + 5)(x + 7)= 0 $
D.$ (x - 5)(x - 7)= 0 $
答案: A
4. (3 分)(2025·宿迁宿豫区期中)若代数式 $ x + 2 $ 的值与代数式 $ x(x + 2) $ 的值相等,则 $ x $ 的值为
-2或1
答案: -2或1
5. (6 分)用因式分解法解下列方程:
(1)$ x^{2}= -3x $;
(2)$ x^{2}-6x + 8= 0 $;
(3)$ 4(x + 3)^{2}= 25(x - 2)^{2} $。
答案: 解:
(1)
∵x²+3x=0,
∴x(x+3)=0,
则x=0或x+3=0,
解得x₁=0,x₂=-3.
(2)
∵(x-2)(x-4)=0,
∴x-2=0或x-4=0,
解得x₁=2,x₂=4.
(3)
∵4(x+3)²-25(x-2)²=0,
∴(7x-4)(-3x+16)=0,
则7x-4=0或-3x+16=0,
解得x₁=4/7,x₂=16/3.
6. (3 分)下列方程中不适合用因式分解法求解的是(
D
)
A.$ 3x^{2}-2x= 0 $
B.$ 4x^{2}= 9 $
C.$ (3x + 1)= 2x(3x + 1) $
D.$ 2x^{2}+5x= 6 $
答案: D
7. (3 分)方程 $ 9(x + 1)^{2}-4(x - 1)^{2}= 0 $ 的正确解法是(
C
)
A.直接开方,得 $ 3(x + 1)= 2(x - 1) $
B.化为一般形式,得 $ 13x^{2}+5= 0 $
C.因式分解,得 $ [3(x + 1)+2(x - 1)] \cdot [3(x + 1)-2(x - 1)]= 0 $
D.直接得 $ x + 1= 0 $ 或 $ x - 1= 0 $
答案: C
8. (3 分)(2025·连云港灌云县质检)写出一个既能直接用开平方法解,又能用因式分解法解的一元二次方程:
x²-64=0(答案不唯一)
答案: x²-64=0(答案不唯一)

查看更多完整答案,请扫码查看

关闭