第68页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
1.如图,D是BC上的点,$∠ADB=∠BAC$,则下列结论正确的是(

A.$△ABC\backsim △DAC$
B.$△ABC\backsim △DBA$
C.$△ABD\backsim △ACD$
D.以上都不正确
B
)A.$△ABC\backsim △DAC$
B.$△ABC\backsim △DBA$
C.$△ABD\backsim △ACD$
D.以上都不正确
答案:
B
2.有一个角为$30^{\circ }$的两个直角三角形一定(
A.全等
B.相似
C.既不全等又不相似
D.无法确定
B
)A.全等
B.相似
C.既不全等又不相似
D.无法确定
答案:
B
3.如图,在$△ABC$中,$∠ACB=90^{\circ },CD⊥AB$于点D,则相似三角形共有(

A.1对
B.2对
C.3对
D.4对
C
)A.1对
B.2对
C.3对
D.4对
答案:
C
4.如图,$△ABC$和$△DFE$是否相似?说明你的理由。


答案:
解:$\triangle ABC \backsim \triangle DFE$. 理由如下:
$\because \angle A = 55^{\circ}, \angle C = 62^{\circ}$,
$\therefore \angle B = 63^{\circ}$,
$\because \angle C = \angle E, \angle B = \angle F$,
$\therefore \triangle ABC \backsim \triangle DFE$.
$\because \angle A = 55^{\circ}, \angle C = 62^{\circ}$,
$\therefore \angle B = 63^{\circ}$,
$\because \angle C = \angle E, \angle B = \angle F$,
$\therefore \triangle ABC \backsim \triangle DFE$.
5.如图,在$\odot O$中,弦AB,CD交于点P.证明:$△PAD\backsim △PCB.$

答案:
证明:$\because \angle D$ 与 $\angle B$ 都是 $\overset{\frown}{AC}$ 所对的圆周角,
$\therefore \angle D = \angle B$,
又 $\because \angle APD = \angle CPB$,
$\therefore \triangle PAD \backsim \triangle PCB$.
$\therefore \angle D = \angle B$,
又 $\because \angle APD = \angle CPB$,
$\therefore \triangle PAD \backsim \triangle PCB$.
6.如图,已知$∠1=∠2$,那么添加一个条件后,仍无法判定$△ABC\backsim △ADE$的是(

A.$∠B=∠D$
B.$\frac {AB}{AD}=\frac {BC}{DE}$
C.$\frac {AB}{AD}=\frac {AC}{AE}$
D.$∠C=∠AED$
B
)A.$∠B=∠D$
B.$\frac {AB}{AD}=\frac {BC}{DE}$
C.$\frac {AB}{AD}=\frac {AC}{AE}$
D.$∠C=∠AED$
答案:
B
7.(2025·越秀开学)如图,在矩形ABCD中,点E为边BC上的一点,$DF⊥AE$于点F.
(1)证明:$△ABE\backsim △DFA;$
(2)若$AB=3,BE=4,AD=6$,求DF的长.

(1)证明:$△ABE\backsim △DFA;$
(2)若$AB=3,BE=4,AD=6$,求DF的长.
答案:
(1) 证明:$\because$ 四边形 $ABCD$ 是矩形,
$\therefore BC // AD, \angle B = 90^{\circ}$,
$\therefore \angle AEB = \angle DAF$,
$\because DF \perp AE$ 于点 $F$,
$\therefore \angle DFA = 90^{\circ}$,
$\therefore \angle B = \angle DFA$,
$\therefore \triangle ABE \backsim \triangle DFA$;
(2) 解:$\because \angle B = 90^{\circ}, AB = 3, BE = 4$,
$\therefore EA = \sqrt{AB^{2} + BE^{2}} = \sqrt{3^{2} + 4^{2}} = 5$,
$\because \triangle ABE \backsim \triangle DFA, AD = 6$,
$\therefore \frac{AB}{DF} = \frac{EA}{AD}$,
$\therefore DF = \frac{AB \cdot AD}{EA} = \frac{3 × 6}{5} = \frac{18}{5}$,
$\therefore DF$ 的长是 $\frac{18}{5}$.
(1) 证明:$\because$ 四边形 $ABCD$ 是矩形,
$\therefore BC // AD, \angle B = 90^{\circ}$,
$\therefore \angle AEB = \angle DAF$,
$\because DF \perp AE$ 于点 $F$,
$\therefore \angle DFA = 90^{\circ}$,
$\therefore \angle B = \angle DFA$,
$\therefore \triangle ABE \backsim \triangle DFA$;
(2) 解:$\because \angle B = 90^{\circ}, AB = 3, BE = 4$,
$\therefore EA = \sqrt{AB^{2} + BE^{2}} = \sqrt{3^{2} + 4^{2}} = 5$,
$\because \triangle ABE \backsim \triangle DFA, AD = 6$,
$\therefore \frac{AB}{DF} = \frac{EA}{AD}$,
$\therefore DF = \frac{AB \cdot AD}{EA} = \frac{3 × 6}{5} = \frac{18}{5}$,
$\therefore DF$ 的长是 $\frac{18}{5}$.
8.如图,AB是$\odot O$的直径,点C是$\odot O$上一点,过点C作$\odot O$的切线,交BA的延长线于点D,连接OC,BC.已知$∠D=30^{\circ },OC=1.$
(1)求证:$△BOC\backsim △BCD;$
(2)求$△BCD$的周长.

(1)求证:$△BOC\backsim △BCD;$
(2)求$△BCD$的周长.
答案:
(1) 证明:由切线的性质,得 $\angle OCD = 90^{\circ}$.
又 $\because \angle D = 30^{\circ}$,
$\therefore \angle BOC = \angle D + \angle OCD = 30^{\circ} + 90^{\circ} = 120^{\circ}$,
又 $\because OB = OC, \therefore \angle B = \angle OCB = 30^{\circ}$,
$\therefore \angle OCB = \angle D$,
又 $\because \angle B = \angle B, \therefore \triangle BOC \backsim \triangle BCD$;
(2) 解:$\because \angle OCD = 90^{\circ}, \angle D = 30^{\circ}, OC = 1$,
$\therefore OD = 2OC = 2$,
$\therefore CD = \sqrt{OD^{2} - OC^{2}} = \sqrt{2^{2} - 1^{2}} = \sqrt{3}$,
$\therefore DB = OD + OB = 2 + 1 = 3$,
$\because \angle B = \angle D = 30^{\circ}, \therefore BC = CD = \sqrt{3}$,
$\therefore \triangle BCD$ 的周长为 $CD + BC + DB = \sqrt{3} + \sqrt{3} + 3 = 3 + 2\sqrt{3}$.
(1) 证明:由切线的性质,得 $\angle OCD = 90^{\circ}$.
又 $\because \angle D = 30^{\circ}$,
$\therefore \angle BOC = \angle D + \angle OCD = 30^{\circ} + 90^{\circ} = 120^{\circ}$,
又 $\because OB = OC, \therefore \angle B = \angle OCB = 30^{\circ}$,
$\therefore \angle OCB = \angle D$,
又 $\because \angle B = \angle B, \therefore \triangle BOC \backsim \triangle BCD$;
(2) 解:$\because \angle OCD = 90^{\circ}, \angle D = 30^{\circ}, OC = 1$,
$\therefore OD = 2OC = 2$,
$\therefore CD = \sqrt{OD^{2} - OC^{2}} = \sqrt{2^{2} - 1^{2}} = \sqrt{3}$,
$\therefore DB = OD + OB = 2 + 1 = 3$,
$\because \angle B = \angle D = 30^{\circ}, \therefore BC = CD = \sqrt{3}$,
$\therefore \triangle BCD$ 的周长为 $CD + BC + DB = \sqrt{3} + \sqrt{3} + 3 = 3 + 2\sqrt{3}$.
查看更多完整答案,请扫码查看