第65页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
1. 如图,$\triangle ABC \backsim \triangle ACD$,$\angle A = 60^{\circ}$,$\angle ACD = 40^{\circ}$,则$\angle BCD =$(

A. $30^{\circ}$
B. $40^{\circ}$
C. $50^{\circ}$
D. $30^{\circ}$或$50^{\circ}$
B
)A. $30^{\circ}$
B. $40^{\circ}$
C. $50^{\circ}$
D. $30^{\circ}$或$50^{\circ}$
答案:
B
2. 如图,$\triangle ABC$与$\triangle HFE$相似,则:
(1)$AB$的对应边为
(2)相似比$k =$

(1)$AB$的对应边为
HF
,$AC$的对应边为HE
,$BC$的对应边为FE
;(2)相似比$k =$
$\frac{1}{2}$
。
答案:
(1)HF HE FE
(2)$\frac{1}{2}$
(1)HF HE FE
(2)$\frac{1}{2}$
3. 若$\triangle ABC \backsim \triangle DEF$,$\triangle ABC$与$\triangle DEF$最长的边分别为8和12,$\triangle ABC$的最短边为4,则$\triangle DEF$最短边为
6
。
答案:
6
4. 如图,$\triangle ABC \backsim \triangle DEC$,$\angle D = 40^{\circ}$,$\angle ACB = 80^{\circ}$,$BC = 3$,$AC = 4$,$CD = 6$。
(1)$\angle B =$
(2)求$CE$的长。

(1)$\angle B =$
$60^{\circ}$
;(2)求$CE$的长。
解:$\because \triangle ABC \backsim \triangle DEC$,
$\therefore \frac{AC}{CD}=\frac{BC}{CE}$,
$\because BC=3,AC=4,CD=6$,
$\therefore CE=\frac{CD \cdot BC}{AC}=\frac{6 × 3}{4}=\frac{9}{2}$.
$\therefore \frac{AC}{CD}=\frac{BC}{CE}$,
$\because BC=3,AC=4,CD=6$,
$\therefore CE=\frac{CD \cdot BC}{AC}=\frac{6 × 3}{4}=\frac{9}{2}$.
答案:
(1)$60^{\circ}$
(2)解:$\because \triangle ABC \backsim \triangle DEC$,
$\therefore \frac{AC}{CD}=\frac{BC}{CE}$,
$\because BC=3,AC=4,CD=6$,
$\therefore CE=\frac{CD \cdot BC}{AC}=\frac{6 × 3}{4}=\frac{9}{2}$.
(1)$60^{\circ}$
(2)解:$\because \triangle ABC \backsim \triangle DEC$,
$\therefore \frac{AC}{CD}=\frac{BC}{CE}$,
$\because BC=3,AC=4,CD=6$,
$\therefore CE=\frac{CD \cdot BC}{AC}=\frac{6 × 3}{4}=\frac{9}{2}$.
5. (循环练)如图,点$A$在双曲线$y = \frac{k}{x}$上,$AB \perp x$轴于点$B$,且$\triangle AOB$的面积是8,则$k$的值是

-16
。
答案:
-16
6. 如图,$\triangle ABC$中,$D$是$AB$上一点,已知$\triangle ABC \backsim \triangle ACD$,$AD = 4$,$AB = 9$,则$AC =$

6
。
答案:
6 解析:$\because \triangle ABC \backsim \triangle ACD,\therefore \frac{AC}{AB}=\frac{AD}{AC}$,
$\therefore AC^{2}=AB × AD,\because AD=4,AB=9,\therefore AC^{2}=4 × 9=36,\therefore AC=6$.
$\therefore AC^{2}=AB × AD,\because AD=4,AB=9,\therefore AC^{2}=4 × 9=36,\therefore AC=6$.
7. 如图,$AD$是$Rt\triangle ABC$斜边上高,$\triangle ABD \backsim \triangle CAD$,$BD = 4$,$CD = 2$,求$AD$的长。

答案:
解:$\because \triangle ABD \backsim \triangle CAD$,
$\therefore \frac{AD}{CD}=\frac{BD}{AD}$,
$\therefore AD^{2}=CD \cdot BD$,
$\because BD=4,CD=2$,
$\therefore AD^{2}=4 × 2=8$,
$\because AD>0$,
$\therefore AD=2 \sqrt{2}$.
$\therefore \frac{AD}{CD}=\frac{BD}{AD}$,
$\therefore AD^{2}=CD \cdot BD$,
$\because BD=4,CD=2$,
$\therefore AD^{2}=4 × 2=8$,
$\because AD>0$,
$\therefore AD=2 \sqrt{2}$.
8. 如图,矩形$ABCD$中,点$E$,$F$分别在$AD$,$CD$上,$\triangle ABE \backsim \triangle DEF$,$AB = 6$,$AE = 8$,$ED = 3$,求$FC$的长。

答案:
解:$\because$ 四边形$ABCD$是矩形,
$\therefore AB=DC=6$,
$\because \triangle ABE \backsim \triangle DEF$,
$\therefore \frac{AB}{DE}=\frac{AE}{DF}$,即$\frac{6}{3}=\frac{8}{DF}$,
$\therefore DF=4$,
$\therefore FC=DC-DF=6-4=2$.
$\therefore AB=DC=6$,
$\because \triangle ABE \backsim \triangle DEF$,
$\therefore \frac{AB}{DE}=\frac{AE}{DF}$,即$\frac{6}{3}=\frac{8}{DF}$,
$\therefore DF=4$,
$\therefore FC=DC-DF=6-4=2$.
9. 如图,正方形$ABCD$的两对角线交于点$O$,下列说法错误是(
A. $\triangle AOB$与$\triangle ADC$相似
B. $\triangle AOB$与$\triangle ADC$的相似比为$1:\sqrt{2}$
C. $\triangle AOB$与$\triangle AOD$的相似比为$1:1$
D. $\triangle AOB$与$\triangle BOC$不相似
D
)A. $\triangle AOB$与$\triangle ADC$相似
B. $\triangle AOB$与$\triangle ADC$的相似比为$1:\sqrt{2}$
C. $\triangle AOB$与$\triangle AOD$的相似比为$1:1$
D. $\triangle AOB$与$\triangle BOC$不相似
答案:
9.D
查看更多完整答案,请扫码查看