2025年正大图书练测考八年级数学下册鲁教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年正大图书练测考八年级数学下册鲁教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年正大图书练测考八年级数学下册鲁教版》

5. 用适当的方法解下列方程:
(1)$x^{2}-4x - 6 = 0$;
(2)$x^{2}-5x + 2 = 0$;
(3)$y(y - 8)=-16$;
(4)$-3x+\frac{1}{2}x^{2}=-2$;
(5)$4(x + 1)^{2}=9(x - 2)^{2}$;
(6)$(x - 3)(x + 2)=6$;
(7)$(2y - 1)^{2}=3(1 - 2y)+4$.
答案: 解:
(1)由题意,得$(x - 2)^{2}=6 + 4$,
$\therefore x - 2=\pm\sqrt{10}$,
$\therefore x_{1}=2+\sqrt{10},x_{2}=2-\sqrt{10}$.
(2)由题意,得$a = 1,b=-5,c = 2$,
$\therefore\Delta=b^{2}-4ac = 17$,
$\therefore x=\frac{5\pm\sqrt{17}}{2}$,
$\therefore x_{1}=\frac{5+\sqrt{17}}{2},x_{2}=\frac{5-\sqrt{17}}{2}$.
(3)由题意,得$y^{2}-8y + 16 = 0$,
$\therefore (y - 4)^{2}=0$,
$\therefore y_{1}=y_{2}=4$.
(4)由题意,得$x^{2}-6x=-4$,
$\therefore (x - 3)^{2}=9 - 4$,
$\therefore x - 3=\pm\sqrt{5}$,
$\therefore x_{1}=3+\sqrt{5},x_{2}=3-\sqrt{5}$.
(5)由题意,得$[2(x + 1)]^{2}=[3(x - 2)]^{2}$,
$\therefore 2(x + 1)=3(x - 2)$或$2(x + 1)=-3(x - 2)$,
$\therefore x_{1}=\frac{4}{5},x_{2}=8$.
(6)由题意,得$x^{2}-x - 12 = 0$,
$\therefore (x + 3)(x - 4)=0$,
$\therefore x_{1}=-3,x_{2}=4$.
(7)$(2y - 1)^{2}+3(2y - 1)-4 = 0$,
$(2y - 1 + 4)(2y - 1 - 1)=0$,
$\therefore 2y - 1 + 4 = 0$或$2y - 1 - 1 = 0$,
$\therefore y_{1}=-\frac{3}{2},y_{2}=1$.
6. 阅读下面的材料:
解方程$x^{4}-7x^{2}+12 = 0$,这是一个一元四次方程,根据该方程的特点,它的解法通常是:
设$x^{2}=y$,则$x^{4}=y^{2}$,
$\therefore$原方程可化为$y^{2}-7y + 12 = 0$,
$\therefore a = 1$,$b=-7$,$c = 12$,
$\therefore\Delta=b^{2}-4ac=(-7)^{2}-4\times1\times12 = 1$,
$\therefore x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}=\frac{-(-7)\pm\sqrt{1}}{2}$,
解得$y_{1}=3$,$y_{2}=4$.
当$y = 3$时,$x^{2}=3$,$x=\pm\sqrt{3}$.
当$y = 4$时,$x^{2}=4$,$x=\pm2$.
$\therefore$原方程有四个根是$x_{1}=\sqrt{3}$,$x_{2}=-\sqrt{3}$,$x_{3}=2$,$x_{4}=-2$.
以上方法叫换元法,达到了降次的目的,体现了数学的转化思想,运用上述方法解答下列问题.
(1)解方程:$(x^{2}+x)^{2}-5(x^{2}+x)+4 = 0$;
(2)已知实数$a$,$b$满足$(a^{2}+b^{2})^{2}-3(a^{2}+b^{2})-10 = 0$,试求$a^{2}+b^{2}$的值.
答案: 解:
(1)设$y=x^{2}+x$,则原方程可化为$y^{2}-5y + 4 = 0$,
$\therefore a = 1,b=-5,c = 4$,
$\therefore\Delta=b^{2}-4ac=(-5)^{2}-4\times1\times4 = 9$.
$\therefore y=\frac{5\pm\sqrt{9}}{2}=\frac{5\pm3}{2}$,
解得$y_{1}=1,y_{2}=4$.
当$x^{2}+x = 1$,即$x^{2}+x - 1 = 0$时,
解得$x=\frac{-1\pm\sqrt{5}}{2}$.
当$x^{2}+x = 4$,即$x^{2}+x - 4 = 0$时,
解得$x=\frac{-1\pm\sqrt{17}}{2}$.
综上所述,原方程的解为
$x_{1}=\frac{-1+\sqrt{5}}{2},x_{2}=\frac{-1-\sqrt{5}}{2}$,
$x_{3}=\frac{-1+\sqrt{17}}{2},x_{4}=\frac{-1-\sqrt{17}}{2}$.
(2)设$x=a^{2}+b^{2}$,则原方程可化为$x^{2}-3x - 10 = 0$,
整理,得$(x - 5)(x + 2)=0$,
解得$x_{1}=5,x_{2}=-2$(舍去).
故$a^{2}+b^{2}=5$.

查看更多完整答案,请扫码查看

关闭