2026年高中必刷题高中数学必修第二册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年高中必刷题高中数学必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



1. [河南郑州2025高一联考]若$\boldsymbol{a},\boldsymbol{b}$是平面内一组不共线的非零向量,则下列四组向量也可以作为一个基底的为(
B
)
①$\boldsymbol{a}-\boldsymbol{b}$和$2025\boldsymbol{b}-2025\boldsymbol{a}$;②$\boldsymbol{a}+\boldsymbol{b}$和$\boldsymbol{a}-\boldsymbol{b}$;③$3\boldsymbol{a}-2\boldsymbol{b}$和$2\boldsymbol{a}-3\boldsymbol{b}$;④$\boldsymbol{a}-3\boldsymbol{b}$和$6\boldsymbol{b}-2\boldsymbol{a}$.
A.①②
B.②③
C.③④
D.①④
答案: 1.B【解析】对于①,因为$2025\boldsymbol{b} - 2025\boldsymbol{a} = -2025(\boldsymbol{a} - \boldsymbol{b})$,所以$\boldsymbol{a} - \boldsymbol{b}$和$2025\boldsymbol{b} - 2025\boldsymbol{a}$是共线向量,不能作为一个基底;
对于②,设$\boldsymbol{a} + \boldsymbol{b} = \lambda(\boldsymbol{a} - \boldsymbol{b})$,可得$\begin{cases} \lambda = 1 \\ \lambda = -1 \end{cases}$,方程组无解,所以$\boldsymbol{a} + \boldsymbol{b}$和$\boldsymbol{a} - \boldsymbol{b}$不共线,可以作为一个基底;
对于③,设$3\boldsymbol{a} - 2\boldsymbol{b} = \mu(2\boldsymbol{a} - 3\boldsymbol{b})$,可得$\begin{cases} 2\mu = 3 \\ -3\mu = -2 \end{cases}$,方程组无解,所以$3\boldsymbol{a} - 2\boldsymbol{b}$和$2\boldsymbol{a} - 3\boldsymbol{b}$不共线,可以作为一个基底;
对于④,因为$\boldsymbol{a} - 3\boldsymbol{b} = -\frac{1}{2}(6\boldsymbol{b} - 2\boldsymbol{a})$,所以$\boldsymbol{a} - 3\boldsymbol{b}$和$6\boldsymbol{b} - 2\boldsymbol{a}$是共线向量,不能作为一个基底.故选B.
2. 如图,在$\triangle ABC$中,$\overrightarrow {BD}=2\overrightarrow {DC}$,点$E$是线段$AD$的中点,则$\overrightarrow {AC}=$(
C
)


A.$\frac {3}{4}\overrightarrow {AD}+\frac {1}{2}\overrightarrow {BE}$
B.$\frac {3}{4}\overrightarrow {AD}+\overrightarrow {BE}$
C.$\frac {5}{4}\overrightarrow {AD}+\frac {1}{2}\overrightarrow {BE}$
D.$\frac {5}{4}\overrightarrow {AD}+\overrightarrow {BE}$
答案:
2.C【解析】由题意知,$\overrightarrow{AC} = \overrightarrow{AD} + \overrightarrow{DC} = \overrightarrow{AD} + \frac{1}{2}\overrightarrow{BD} = \overrightarrow{AD} + \frac{1}{2}(\overrightarrow{BE} + \overrightarrow{ED}) = \overrightarrow{AD} + \frac{1}{2}\overrightarrow{BE} + \frac{1}{2}\overrightarrow{ED} = \overrightarrow{AD} + \frac{1}{2}\overrightarrow{BE} + \frac{1}{2} × \frac{1}{2}\overrightarrow{AD} = \frac{5}{4}\overrightarrow{AD} + \frac{1}{2}\overrightarrow{BE}$.故选C.
3. (多选)[湖北黄冈2025高一期中]如图,已知$\triangle ABC$,$AB=1$,$AC=\sqrt {3}$,$BC=2$,其内有一点$G$,满足$\overrightarrow {GA}+\overrightarrow {GB}+\overrightarrow {GC}=\boldsymbol{0}$,过点$G$的直线分别交$AB$,$AC$于点$D$,$E$.设$\overrightarrow {AD}=\lambda \overrightarrow {AB}$,$\overrightarrow {AE}=\mu \overrightarrow {AC}(0<\lambda <1$,$0<\mu <1)$,则下列说法正确的是(
BCD
)


A.$\overrightarrow {AG}=\frac {1}{3}\overrightarrow {AB}+\frac {1}{4}\overrightarrow {AC}$
B.点$G$为$\triangle ABC$的重心
C.$\frac {1}{\lambda }+\frac {1}{\mu }=3$
D.$|\overrightarrow {CG}|=\frac {\sqrt {13}}{3}$
答案:
3.BCD【解析】对于A:由$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = 0$得$\overrightarrow{GA} + (\overrightarrow{AG} + \overrightarrow{GB}) + (\overrightarrow{AG} + \overrightarrow{GC}) = 2\overrightarrow{AG} \Rightarrow \overrightarrow{AB} + \overrightarrow{AC} = 3\overrightarrow{AG} \Rightarrow \overrightarrow{AG} = \frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$,故A错误;
对于B:如图,取BC的中点为M,连接GM,由$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = 0$得$\overrightarrow{GA} = -(\overrightarrow{GB} + \overrightarrow{GC}) = -2\overrightarrow{GM}$,所以点A,G,M共线,且G为靠近点M的三等分点,即G为$\triangle ABC$的重心,故B正确;
对于C:由$\overrightarrow{AG} = \frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC} = \frac{1}{3\lambda}\overrightarrow{AD} + \frac{1}{3\mu}\overrightarrow{AE},D,G,E$三点共线,得$\frac{1}{3\lambda} + \frac{1}{3\mu} = 1 \Rightarrow \frac{1}{\lambda} + \frac{1}{\mu} = 3$,故C正确;
对于D:因为$AC = \sqrt{3},BC = 2,AB = 1$,所以$AC^2 + AB^2 = BC^2$,所以$AB \perp AC$,
设AB的中点为N,连接GN,由G为$\triangle ABC$的重心,可知C,G,N三点共线,则$AN = \frac{1}{2}AB = \frac{1}{2}$,在$Rt \triangle ACN$中,有$CN = \sqrt{AC^2 + AN^2} = \frac{\sqrt{13}}{2}$,又G为重心,所以$CG = \frac{2}{3}CN = \frac{\sqrt{13}}{3}$,故D正确.故选BCD.
ANDB
4. (多选)[吉林长春吉大附中实验学校2024高一期中]已知等边三角形$ABC$的边长为$2$,$\overrightarrow {BD}=2\overrightarrow {DC}$,$\overrightarrow {CE}=2\overrightarrow {EA}$,$AD$交$BE$于点$M$,则(
AC
)

A.$\overrightarrow {AD}=\frac {1}{3}\overrightarrow {AB}+\frac {2}{3}\overrightarrow {AC}$
B.$\overrightarrow {BM}=\frac {3}{4}\overrightarrow {BE}$
C.$S_{\triangle BMD}=8S_{\triangle AME}$
D.$S_{四边形CDME}=\frac {3\sqrt {3}}{7}$
答案:
4.AC【解析】对于A,因为$\overrightarrow{BD} = 2\overrightarrow{DC}$,所以$\overrightarrow{BD} = \frac{2}{3}\overrightarrow{BC}$,所以$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AB} + \frac{2}{3}\overrightarrow{BC} = \overrightarrow{AB} + \frac{2}{3}(\overrightarrow{AC} - \overrightarrow{AB}) = \frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC}$,故A正确;
对于B,设$\overrightarrow{BM} = k\overrightarrow{BE}(k \in \mathbb{R})$,所以$\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BM} = \overrightarrow{AB} + k\overrightarrow{BE} = \overrightarrow{AB} + k(\frac{1}{3}\overrightarrow{AC} - \overrightarrow{AB}) = (1 - k)\overrightarrow{AB} + \frac{1}{3}k\overrightarrow{AC}$,
又A,M,D三点在一条直线上,故$\overrightarrow{AM} // \overrightarrow{AD}$,故$\frac{1 - k}{\frac{1}{3}} = \frac{\frac{1}{3}k}{\frac{2}{3}}$,解得$k = \frac{6}{7}$,即$\overrightarrow{BM} = \frac{6}{7}\overrightarrow{BE}$.
点悟:共线向量$\boldsymbol{b} = \lambda\boldsymbol{a}$的一种变形形式
故B错误;

对于C,设$S_{\triangle AME} = S$,由于$\overrightarrow{BM} = \frac{6}{7}\overrightarrow{BE}$,则
敲黑板:数乘向量不仅可以表示出方向关系,也可以得到线段比例关系,由此可得到面积之间的关系
$S_{\triangle ABE} = 7S_{\triangle AME} = 7S,S_{\triangle ABM} = 6S_{\triangle AME} = 6S$,又$\overrightarrow{AD} = \frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC} = \frac{3}{7}\overrightarrow{AD}$,所以$S_{\triangle ABD} = 14S \Rightarrow S_{\triangle BMD} = 8S$,故C正确;
对于D,因为$\overrightarrow{CE} = 2\overrightarrow{EA}$,所以$S_{\triangle BEC} = 2S_{\triangle ABE} = 14S$,所以$S_{四边形CDME} = S_{\triangle BEC} - S_{\triangle BMD} = 14S - 8S = 6S$,
由$S_{\triangle ABC} = S_{\triangle ABE} + S_{\triangle BEC} = 21S = \frac{\sqrt{3}}{4} × 2^2$,得$S = \frac{\sqrt{3}}{21}$,所以$S_{四边形CDME} = 6S = \frac{2\sqrt{3}}{7}$,故D错误.
故选AC.
5. 在等腰梯形$ABCD$中,已知$AB// DC$,$AB=2$,$BC=1$,$\angle DAB=60^{\circ }$,点$P$在线段$BC$上,且$\overrightarrow {AP}=m\overrightarrow {AB}+n\overrightarrow {AD}(m,n\in \mathbf{R})$,当点$P$为线段$BC$中点时,$m+n=$
$\frac{5}{4}$
;当点$P$在线段$BC$上运动时,$m+n$的最大值为
$\frac{3}{2}$
.
答案:
5.$\frac{5}{4} \frac{3}{2}$【解析】如图,连接AC.

因为$AB = 2,BC = 1,\angle DAB = 60°$,
所以$DC = AB - 2AD\cos 60° = 2 - 2 × 1 × \frac{1}{2} = 1$,故$\overrightarrow{DC} = \frac{1}{2}\overrightarrow{AB}$.
当点P为线段BC中点时,$\overrightarrow{AP} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC}) = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AD} + \frac{1}{2}\overrightarrow{AB}) = \frac{3}{4}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AD}$,
又$\overrightarrow{AP} = m\overrightarrow{AB} + n\overrightarrow{AD}$,所以$m = \frac{3}{4},n = \frac{1}{2}$,所以$m + n = \frac{5}{4}$.
当点P在线段BC上运动时,$\overrightarrow{AP} = m\overrightarrow{AB} + n\overrightarrow{AD} = m\overrightarrow{AB} + n(\overrightarrow{AC} - \overrightarrow{DC}) = m\overrightarrow{AB} + n(\overrightarrow{AC} - \frac{1}{2}\overrightarrow{AB}) = (m - \frac{1}{2}n)\overrightarrow{AB} + n\overrightarrow{AC}$,
由B,P,C三点共线可知,$m - \frac{1}{2}n + n = 1$,即$m + \frac{n}{2} = 1$,所以$m + n = 1 + \frac{n}{2}$,
又$\overrightarrow{AP} = (1 - n)\overrightarrow{AB} + n\overrightarrow{AC}$,即$\overrightarrow{AP} - \overrightarrow{AB} = n(\overrightarrow{AC} - \overrightarrow{AB})$,所以$\overrightarrow{BP} = n\overrightarrow{BC}$,所以$0 \leq n \leq 1$,所以$m + n = 1 + \frac{n}{2} \leq \frac{3}{2}$,即$m + n$的最大值为$\frac{3}{2}$.
6. [重庆主城区七校2025高一期末]如图,在平行四边形$ABCD$中,$\overrightarrow {BE}=\frac {1}{2}\overrightarrow {BC}$,$\overrightarrow {CF}=2\overrightarrow {FD}$.
(1)若$\overrightarrow {EF}=x\overrightarrow {AB}+y\overrightarrow {AD}$,求$3x+2y$的值;
(2)若$|\overrightarrow {AB}|=6$,$|\overrightarrow {AD}|=4$,$\angle BAD=60^{\circ }$,求$\overrightarrow {AC}· \overrightarrow {EF}$的值.
答案: 6.【解】
(1)$\because \overrightarrow{BE} = \frac{1}{2}\overrightarrow{BC},\overrightarrow{CF} = 2\overrightarrow{FD},\therefore \overrightarrow{EF} = \overrightarrow{EC} + \overrightarrow{CF} = \frac{1}{2}\overrightarrow{BC} - \frac{2}{3}\overrightarrow{DC} = \frac{1}{2}\overrightarrow{AD} - \frac{2}{3}\overrightarrow{AB}$.
又$\overrightarrow{EF} = x\overrightarrow{AB} + y\overrightarrow{AD}$,$\therefore x = -\frac{2}{3},y = \frac{1}{2}$,故$3x + 2y = 3 × (-\frac{2}{3}) + 2 × \frac{1}{2} = -1$.
(2)$\because \overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD},\therefore \overrightarrow{AC} · \overrightarrow{EF} = (\overrightarrow{AB} + \overrightarrow{AD}) · (\frac{1}{2}\overrightarrow{AD} - \frac{2}{3}\overrightarrow{AB}) = \frac{1}{2}\overrightarrow{AD}^2 - \frac{2}{3}\overrightarrow{AB}^2 - \frac{1}{6}\overrightarrow{AB} · \overrightarrow{AD}$.
又$\because |\overrightarrow{AB}| = 6,|\overrightarrow{AD}| = 4,\angle BAD = 60°$,
$\therefore \overrightarrow{AC} · \overrightarrow{EF} = \frac{1}{2} × 16 - \frac{2}{3} × 36 - \frac{1}{6} × 6 × 4 × \cos 60° = 8 - 24 - 2 = -18$,
故$\overrightarrow{AC} · \overrightarrow{EF}$的值为$-18$.
7. [浙江杭州四校2024高一联考]如图,在$\triangle ABC$中,$D$是$BC$的中点,$E$在边$AB$上且$BE=2EA$,$AD$与$CE$交于点$O$.
(1)用$\overrightarrow {AB},\overrightarrow {AC}$表示$\overrightarrow {DE}$;
(2)过点$O$作直线交线段$AB$于点$G$,交线段$AC$于点$H$,且$\overrightarrow {AG}=\frac {2}{3}\overrightarrow {AB}$,$\overrightarrow {AH}=t\overrightarrow {AC}$,求$t$的值.
答案:
7.【解】
(1)$\overrightarrow{DE} = \overrightarrow{AE} - \overrightarrow{AD} = \frac{1}{3}\overrightarrow{AB} - \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC}) = -\frac{1}{6}\overrightarrow{AB} - \frac{1}{2}\overrightarrow{AC}$.
(2)因为E,C,O三点共线,设$\overrightarrow{EO} = \lambda\overrightarrow{EC}(\lambda \in \mathbb{R})$,所以$\overrightarrow{AO} - \overrightarrow{AE} = \lambda(\overrightarrow{AC} - \overrightarrow{AE})$,$\overrightarrow{AO} = \lambda\overrightarrow{AC} + (1 - \lambda)\overrightarrow{AE}$.
由$\overrightarrow{BE} = 2\overrightarrow{EA}$得$\overrightarrow{AO} = \lambda\overrightarrow{AC} + (1 - \lambda)\frac{1}{3}\overrightarrow{AB}$.
设$\overrightarrow{AO} = \mu\overrightarrow{AD}(\mu \in \mathbb{R})$,所以$\overrightarrow{AO} = \frac{\mu}{2}\overrightarrow{AB} + \frac{\mu}{2}\overrightarrow{AC}$,
则有$\begin{cases} \lambda = \frac{\mu}{2} \\ 1 - \lambda = \frac{\mu}{3} \end{cases}$,解得$\lambda = \frac{1}{4}$,即$\overrightarrow{AO} = \frac{1}{4}\overrightarrow{AC} + \frac{1}{4}\overrightarrow{AB}$.
又G,O,H三点共线,设$\overrightarrow{AO} = m\overrightarrow{AG} + (1 - m)\overrightarrow{AH}(m \in \mathbb{R})$,又$\overrightarrow{AO} = m · \frac{2}{3}\overrightarrow{AB} + (1 - m) · \overrightarrow{AC}$,
所以$\begin{cases} \frac{2m}{3} = \frac{1}{4} \\ (1 - m)t = \frac{1}{4} \end{cases}$,解得$\begin{cases} m = \frac{3}{8} \\ t = \frac{2}{5} \end{cases}$.

查看更多完整答案,请扫码查看

关闭