2025年新课标教材同步导练八年级数学下册北师大版C版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年新课标教材同步导练八年级数学下册北师大版C版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年新课标教材同步导练八年级数学下册北师大版C版》

17. (2021·绍兴)如图,在△ABC中,∠A = 40°,点D、E分别在边AB、AC上,BD = BC = CE,连接CD、BE.
(1)若∠ABC = 80°,求∠BDC,∠ABE的度数;
(2)写出∠BEC与∠BDC之间的关系,并说明理由.
答案:
(1)$\because \angle ABC = 80^{\circ}$,$BD = BC$,
$\therefore \angle BDC = \angle BCD = \frac{1}{2}(180^{\circ} - 80^{\circ}) = 50^{\circ}$,
$\because \angle A + \angle ABC + \angle ACB = 180^{\circ}$,$\angle A = 40^{\circ}$,
$\therefore \angle ACB = 180^{\circ} - 40^{\circ} - 80^{\circ} = 60^{\circ}$,
$\because CE = BC$,$\therefore \triangle BCE$是等边三角形,
$\therefore \angle EBC = 60^{\circ}$,
$\therefore \angle ABE = \angle ABC - \angle EBC = 20^{\circ}$。
(2)$\angle BEC$与$\angle BDC$之间的关系:$\angle BEC + \angle BDC = 110^{\circ}$,
理由:设$\angle BEC = \alpha$,$\angle BDC = \beta$,
在$\triangle ABE$中,$\alpha = \angle A + \angle ABE = 40^{\circ} + \angle ABE$,
$\because CE = BC$,$\therefore \angle CBE = \angle BEC = \alpha$,
$\therefore \angle ABC = \angle ABE + \angle CBE = \angle A + 2\angle ABE = 40^{\circ} + 2\angle ABE$,
在$\triangle BDC$中,$BD = BC$,$\therefore \angle BDC = \angle BCD = \beta$,
$\therefore \angle BDC + \angle BCD + \angle DBC = 2\beta + 40^{\circ} + 2\angle ABE = 180^{\circ}$,
$\therefore \beta = 70^{\circ} - \angle ABE$,
$\therefore \alpha + \beta = 40^{\circ} + \angle ABE + 70^{\circ} - \angle ABE = 110^{\circ}$,
$\therefore \angle BEC + \angle BDC = 110^{\circ}$。
18. 如图,已知点D为等腰直角△ABC内一点,∠ACB = 90°,∠CAD = ∠CBD = 15°,E为AD延长线上的一点,且CE = CA.
(1)求证:DE平分∠BDC;
(2)若点M在DE上,且DC = DM,求证:ME = BD.

答案:
(1)在等腰直角$\triangle ABC$中,$\angle ACB = 90^{\circ}$,
$\because \angle CAD = \angle CBD = 15^{\circ}$,
$\therefore \angle BAD = \angle ABD = 45^{\circ} - 15^{\circ} = 30^{\circ}$,
$\therefore BD = AD$,$\therefore \triangle BDC\cong\triangle ADC$,
$\therefore \angle DCA = \angle DCB = 45^{\circ}$。
又$\angle BDM = \angle ABD + \angle BAD = 30^{\circ} + 30^{\circ} = 60^{\circ}$,
$\angle EDC = \angle DAC + \angle DCA = 15^{\circ} + 45^{\circ} = 60^{\circ}$,
$\therefore \angle BDM = \angle EDC$,$\therefore DE$平分$\angle BDC$。
(2)连接$MC$。$\because DC = DM$,且$\angle MDC = 60^{\circ}$,
$\therefore \triangle MDC$是等边三角形,即$CM = CD$。
又$\angle EMC = 180^{\circ} - \angle DMC = 180^{\circ} - 60^{\circ} = 120^{\circ}$,$\angle ADC = 180^{\circ} - \angle MDC = 180^{\circ} - 60^{\circ} = 120^{\circ}$,$\therefore \angle EMC = \angle ADC$。
又$\because CE = CA$,$\therefore \angle DAC = \angle CEM = 15^{\circ}$,
$\therefore \triangle ADC\cong\triangle EMC$,$\therefore ME = AD = BD$。

查看更多完整答案,请扫码查看

关闭