2025年新课标教材同步导练八年级数学下册北师大版C版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年新课标教材同步导练八年级数学下册北师大版C版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年新课标教材同步导练八年级数学下册北师大版C版》

16. (2020·徐州)如图,AC⊥BC,DC⊥EC,AC = BC,DC = EC,AE与BD交于点F.
(1)求证:AE = BD;
(2)求∠AFD的度数.
答案: (1)$\because AC\perp BC$,$DC\perp EC$,$\therefore\angle ACB=\angle DCE = 90^{\circ}$,$\therefore\angle ACE=\angle BCD$,
在$\triangle ACE$和$\triangle BCD$中,$\begin{cases}AC = BC\\\angle ACE=\angle BCD\\CE = CD\end{cases}$
$\therefore\triangle ACE\cong\triangle BCD(SAS)$,$\therefore AE = BD$.
(2)设$BC$与$AE$交于点$N$,$\because\angle ACB = 90^{\circ}$,
$\therefore\angle A+\angle ANC = 90^{\circ}$,$\because\triangle ACE\cong\triangle BCD$,
$\therefore\angle A=\angle B$,$\because\angle ANC=\angle BNF$,
$\therefore\angle B+\angle BNF=\angle A+\angle ANC = 90^{\circ}$,
$\therefore\angle AFD=\angle B+\angle BNF = 90^{\circ}$.
17. 如图,在△ABC中,AD平分∠BAC,且BD = CD,DE⊥AB于点E,DF⊥AC于点F.
(1)求证:AB = AC;
(2)若AD = $2\sqrt{3}$,∠DAC = 30°,求AC的长.
答案: (1)$\because AD$平分$\angle BAC$,$DE\perp AB$于点$E$,$DF\perp AC$于点$F$,
$\therefore DE = DF$,$\angle DEB=\angle DFC = 90^{\circ}$.
在$Rt\triangle DEB$和$Rt\triangle DFC$中,$\begin{cases}BD = DC\\DE = DF\end{cases}$,
$\therefore Rt\triangle DEB\cong Rt\triangle DFC$,$\therefore\angle B=\angle C$,
$\therefore AB = AC$.
(2)$\because AB = AC$,$BD = DC$,
$\therefore AD\perp BC$. 在$Rt\triangle ADC$中,
$\because\angle ADC = 90^{\circ}$,$AD = 2\sqrt{3}$,$\angle DAC = 30^{\circ}$,
$\therefore AC = 2CD$,设$CD = a$,则$AC = 2a$.
$\because AC^{2}=AD^{2}+CD^{2}$,$\therefore 4a^{2}=(2\sqrt{3})^{2}+a^{2}$.
$\because a>0$,$\therefore a = 2$,$\therefore AC = 2a = 4$.
18. 已知等腰直角三角形ABC的底边为AB,直线l过直角顶点C,过点A、B分别作l的垂线AE、BF,E、F为垂足.

(1)如图甲,当直线l不与底边AB相交时,求证:EF = AE + BF;
(2)将直线l绕点C顺时针旋转,使l交底边AB于点D,且AD > BD,请先在图乙中画出相应的图形,再直接写出EF、AE、BF之间的等量关系.
答案:
(1)$\because\triangle ABC$为等腰直角三角形,
$\therefore\angle ACB = 90^{\circ}$,$AC = BC$. $\because AE\perp l$,$BF\perp l$,
$\therefore\angle AEC=\angle CFB = 90^{\circ}$,
$\therefore\angle ACE+\angle EAC=\angle ACE+\angle FCB = 90^{\circ}$,
$\therefore\angle EAC=\angle FCB$.
在$\triangle AEC$和$\triangle CFB$中,
$\begin{cases}\angle AEC=\angle CFB\\\angle EAC=\angle FCB\\AC = CB\end{cases}$
$ $$\therefore\triangle AEC\cong\triangle CFB$.$\therefore AE = CF$,$EC = FB$,$\therefore EF = CF + EC = AE + BF$.(2)如图,$EF$、$AE$、$BF$之间的等量关系是$EF = AE - BF(\triangle AEC\cong\triangle CFB)$.

查看更多完整答案,请扫码查看

关闭