第23页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
14. 已知:如图,BE平分∠ABC,CE平分∠ACD交BE于E.
(1)求证:AE平分∠FAC;
(2)若∠ABC = 64°,求∠AEC的度数.

(1)求证:AE平分∠FAC;
(2)若∠ABC = 64°,求∠AEC的度数.
答案:
(1) 过点$E$分别作$EM\perp AB$,$EN\perp AC$,$EG\perp BC$,垂足分别为$M$、$N$、$G$.
$\because BE$平分$\angle ABC$,$CE$平分$\angle ACD$,
$\therefore EM = EG$,$EN = EG$,$\therefore EM = EN$,
$\therefore$点$E$在$\angle FAC$的平分线上,
$\therefore AE$平分$\angle FAC$.
(2)$\angle AEC = 90^{\circ}-\frac{1}{2}\angle ABC = 58^{\circ}$.
(1) 过点$E$分别作$EM\perp AB$,$EN\perp AC$,$EG\perp BC$,垂足分别为$M$、$N$、$G$.
$\because BE$平分$\angle ABC$,$CE$平分$\angle ACD$,
$\therefore EM = EG$,$EN = EG$,$\therefore EM = EN$,
$\therefore$点$E$在$\angle FAC$的平分线上,
$\therefore AE$平分$\angle FAC$.
(2)$\angle AEC = 90^{\circ}-\frac{1}{2}\angle ABC = 58^{\circ}$.
15. (2021·黔东南)在四边形ABCD中,对角线AC平分∠BAD.
【探究发现】
(1)如图①,若∠BAD = 120°,∠ABC = ∠ADC = 90°. 求证:AD + AB = AC;
【拓展迁移】
(2)如图②,若∠BAD = 120°,∠ABC + ∠ADC = 180°.
①猜想AB、AD、AC三条线段的数量关系,并说明理由;
②若AC = 10,求四边形ABCD的面积.

【探究发现】
(1)如图①,若∠BAD = 120°,∠ABC = ∠ADC = 90°. 求证:AD + AB = AC;
【拓展迁移】
(2)如图②,若∠BAD = 120°,∠ABC + ∠ADC = 180°.
①猜想AB、AD、AC三条线段的数量关系,并说明理由;
②若AC = 10,求四边形ABCD的面积.
答案:
(1) 证明:$\because AC$平分$\angle BAD$,$\angle BAD = 120^{\circ}$,
$\therefore \angle DAC=\angle BAC = 60^{\circ}$
$\because \angle ADC=\angle ABC = 90^{\circ}$
$\therefore \angle ACD=\angle ACB = 30^{\circ}$,
$\therefore AD=\frac{1}{2}AC$,$AB=\frac{1}{2}AC$.
$\therefore AD + AB = AC$.
(2)①$AD + AB = AC$,
理由:过点$C$分别作$CE\perp AD$交$AD$延长线于$E$,$CF\perp AB$于$F$. $\because AC$平分$\angle BAD$,$CE\perp AD$于$E$,$CF\perp AB$,$\therefore CF = CE$
$\because \angle ABC+\angle ADC = 180^{\circ}$,$\angle EDC+\angle ADC = 180^{\circ}$,
$\therefore \angle ABC=\angle EDC$,在$\triangle CED$和$\triangle CFB$中,
$\begin{cases}\angle CDE=\angle CBF\\\angle E=\angle CFB\\CE = CF\end{cases}$
$\therefore \triangle CED\cong\triangle CFB(AAS)$,$\therefore FB = DE$,
$\therefore AD + AB = AD + FB + AF = AD + DE + AF = AE + AF$,
在四边形$AFCE$中,由
(1)题知:$AE + AF = AC$,$\therefore AD + AB = AC$.
②在$Rt\triangle ACE$中,$\because AC$平分$\angle BAD$,$\angle BAD = 120^{\circ}$,$\therefore \angle DAC=\angle BAC = 60^{\circ}$,
$\therefore \angle ACE = 30^{\circ}$,$\therefore AE=\frac{1}{2}AC = 5$,
$\therefore CE=\sqrt{AC^{2}-AE^{2}} = 5\sqrt{3}$,
$\because CF = CE$,$AD + AB = AC$,
$S_{四边形ABCD}=\frac{1}{2}AD\cdot CE+\frac{1}{2}AB\cdot CF=\frac{1}{2}(AD + AB)\cdot CE=\frac{1}{2}AC\cdot CE=\frac{1}{2}\times10\times5\sqrt{3}=25\sqrt{3}$.
(1) 证明:$\because AC$平分$\angle BAD$,$\angle BAD = 120^{\circ}$,
$\therefore \angle DAC=\angle BAC = 60^{\circ}$
$\because \angle ADC=\angle ABC = 90^{\circ}$
$\therefore \angle ACD=\angle ACB = 30^{\circ}$,
$\therefore AD=\frac{1}{2}AC$,$AB=\frac{1}{2}AC$.
$\therefore AD + AB = AC$.
(2)①$AD + AB = AC$,
理由:过点$C$分别作$CE\perp AD$交$AD$延长线于$E$,$CF\perp AB$于$F$. $\because AC$平分$\angle BAD$,$CE\perp AD$于$E$,$CF\perp AB$,$\therefore CF = CE$
$\because \angle ABC+\angle ADC = 180^{\circ}$,$\angle EDC+\angle ADC = 180^{\circ}$,
$\therefore \angle ABC=\angle EDC$,在$\triangle CED$和$\triangle CFB$中,
$\begin{cases}\angle CDE=\angle CBF\\\angle E=\angle CFB\\CE = CF\end{cases}$
$\therefore \triangle CED\cong\triangle CFB(AAS)$,$\therefore FB = DE$,
$\therefore AD + AB = AD + FB + AF = AD + DE + AF = AE + AF$,
在四边形$AFCE$中,由
(1)题知:$AE + AF = AC$,$\therefore AD + AB = AC$.
②在$Rt\triangle ACE$中,$\because AC$平分$\angle BAD$,$\angle BAD = 120^{\circ}$,$\therefore \angle DAC=\angle BAC = 60^{\circ}$,
$\therefore \angle ACE = 30^{\circ}$,$\therefore AE=\frac{1}{2}AC = 5$,
$\therefore CE=\sqrt{AC^{2}-AE^{2}} = 5\sqrt{3}$,
$\because CF = CE$,$AD + AB = AC$,
$S_{四边形ABCD}=\frac{1}{2}AD\cdot CE+\frac{1}{2}AB\cdot CF=\frac{1}{2}(AD + AB)\cdot CE=\frac{1}{2}AC\cdot CE=\frac{1}{2}\times10\times5\sqrt{3}=25\sqrt{3}$.
查看更多完整答案,请扫码查看