第61页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
13. (7分)计算:$\tan45^{\circ}\sin^{2}60^{\circ}-4\sin30^{\circ}\cos45^{\circ}+\sqrt{6}\tan30^{\circ}$.
答案:
解:原式$=1\times(\frac{\sqrt{3}}{2})^{2}-4\times\frac{1}{2}\times\frac{\sqrt{2}}{2}+\sqrt{6}\times\frac{\sqrt{3}}{3}=\frac{3}{4}-\sqrt{2}+\sqrt{2}=\frac{3}{4}$
14. (10分)在$Rt\triangle ABC$中,$\angle C$为直角,$\angle A$,$\angle B$,$\angle C$所对边的长分别为$a$,$b$,$c$,根据下列条件解直角三角形:
(1)已知$c = 20$,$\angle A = 60^{\circ}$.
(2)已知$a=\sqrt{15}$,$b = \sqrt{5}$.
(1)已知$c = 20$,$\angle A = 60^{\circ}$.
(2)已知$a=\sqrt{15}$,$b = \sqrt{5}$.
答案:
解:
(1) $\because\angle A = 60^{\circ}$,$\angle C$为直角,$\therefore\angle B = 90^{\circ}-60^{\circ}=30^{\circ}$。$\because c = 20$,$\angle B = 30^{\circ}$,$\therefore b=\frac{c}{2}=10$,$a=\sqrt{20^{2}-10^{2}} = 10\sqrt{3}$。
(2) $\because\angle C$为直角,$a=\sqrt{15}$,$b=\sqrt{5}$,$\therefore c=\sqrt{a^{2}+b^{2}}=\sqrt{15 + 5}=2\sqrt{5}$。$\because\sin B=\frac{b}{c}=\frac{\sqrt{5}}{2\sqrt{5}}=\frac{1}{2}$,$\therefore\angle B = 30^{\circ}$。$\therefore\angle A = 90^{\circ}-30^{\circ}=60^{\circ}$。
(1) $\because\angle A = 60^{\circ}$,$\angle C$为直角,$\therefore\angle B = 90^{\circ}-60^{\circ}=30^{\circ}$。$\because c = 20$,$\angle B = 30^{\circ}$,$\therefore b=\frac{c}{2}=10$,$a=\sqrt{20^{2}-10^{2}} = 10\sqrt{3}$。
(2) $\because\angle C$为直角,$a=\sqrt{15}$,$b=\sqrt{5}$,$\therefore c=\sqrt{a^{2}+b^{2}}=\sqrt{15 + 5}=2\sqrt{5}$。$\because\sin B=\frac{b}{c}=\frac{\sqrt{5}}{2\sqrt{5}}=\frac{1}{2}$,$\therefore\angle B = 30^{\circ}$。$\therefore\angle A = 90^{\circ}-30^{\circ}=60^{\circ}$。
15. (11分)如图,在$\triangle ABC$中,$\angle C = 90^{\circ}$,点$D$在$BC$上,$BD = 4$,$AD = BC$,$\cos\angle ADC=\frac{3}{5}$.
(1)求$CD$的长.
(2)求$\tan B$的值.

(1)求$CD$的长.
(2)求$\tan B$的值.
答案:
解:
(1) 在$Rt\triangle ACD$中,$\cos\angle ADC=\frac{CD}{AD}=\frac{3}{5}$。$\therefore$设$CD = 3x$,$AD = BC = 5x$,根据勾股定理,得$AC=\sqrt{AD^{2}-CD^{2}} = 4x$。$\because BD = 4$,$\therefore5x - 3x = 4$,解得$x = 2$。$\therefore CD = 3x = 6$。
(2) $\because$在$Rt\triangle ABC$中,$AC = 4x = 8$,$BC = 5x = 10$,$\therefore\tan B=\frac{AC}{BC}=\frac{8}{10}=\frac{4}{5}$。
(1) 在$Rt\triangle ACD$中,$\cos\angle ADC=\frac{CD}{AD}=\frac{3}{5}$。$\therefore$设$CD = 3x$,$AD = BC = 5x$,根据勾股定理,得$AC=\sqrt{AD^{2}-CD^{2}} = 4x$。$\because BD = 4$,$\therefore5x - 3x = 4$,解得$x = 2$。$\therefore CD = 3x = 6$。
(2) $\because$在$Rt\triangle ABC$中,$AC = 4x = 8$,$BC = 5x = 10$,$\therefore\tan B=\frac{AC}{BC}=\frac{8}{10}=\frac{4}{5}$。
16. (12分)如图,$AB$为$\odot O$的直径,$C$,$F$为$\odot O$上两点,且点$C$为$\overset{\frown}{BF}$的中点,过点$C$作$AF$的垂线,交$AF$的延长线于点$E$,交$AB$的延长线于点$D$.
(1)求证:$DE$是$\odot O$的切线.
(2)若$\odot O$的半径为3,$\tan D=\frac{3}{4}$,求$AE$的长.

(1)求证:$DE$是$\odot O$的切线.
(2)若$\odot O$的半径为3,$\tan D=\frac{3}{4}$,求$AE$的长.
答案:
解:
(1) 证明:连接$OC$。$\because$点$C$为$\overset{\frown}{BF}$的中点,$\therefore\overset{\frown}{BC}=\overset{\frown}{CF}$。$\therefore\angle BAC=\angle FAC$。$\because OA = OC$,$\therefore\angle OCA=\angle BAC$。$\therefore\angle OCA=\angle FAC$。$\therefore OC// AE$。$\because AE\perp DE$,$\therefore OC\perp DE$。又$\because OC$是$\odot O$的半径,$\therefore DE$是$\odot O$的切线。
(2) 在$Rt\triangle OCD$中,$\because\tan D=\frac{OC}{CD}=\frac{3}{4}$,$OC = 3$,$\therefore CD = 4$。$\therefore OD=\sqrt{OC^{2}+CD^{2}} = 5$。$\therefore AD = OD + AO = 8$。在$Rt\triangle ADE$中,$\because\sin D=\frac{AE}{AD}=\frac{OC}{OD}=\frac{3}{5}$,$\therefore AE=\frac{24}{5}$。
(1) 证明:连接$OC$。$\because$点$C$为$\overset{\frown}{BF}$的中点,$\therefore\overset{\frown}{BC}=\overset{\frown}{CF}$。$\therefore\angle BAC=\angle FAC$。$\because OA = OC$,$\therefore\angle OCA=\angle BAC$。$\therefore\angle OCA=\angle FAC$。$\therefore OC// AE$。$\because AE\perp DE$,$\therefore OC\perp DE$。又$\because OC$是$\odot O$的半径,$\therefore DE$是$\odot O$的切线。
(2) 在$Rt\triangle OCD$中,$\because\tan D=\frac{OC}{CD}=\frac{3}{4}$,$OC = 3$,$\therefore CD = 4$。$\therefore OD=\sqrt{OC^{2}+CD^{2}} = 5$。$\therefore AD = OD + AO = 8$。在$Rt\triangle ADE$中,$\because\sin D=\frac{AE}{AD}=\frac{OC}{OD}=\frac{3}{5}$,$\therefore AE=\frac{24}{5}$。
查看更多完整答案,请扫码查看