2026年天利38套中考试题精选数学浙江专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年天利38套中考试题精选数学浙江专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2026年天利38套中考试题精选数学浙江专版》

1. 甲、乙两个弹簧,在一定的弹性限度内,两个弹簧挂重物后可达到的最大长度均为 $ a $ 厘米。甲弹簧原长 3 厘米,每挂质量为 1 千克的重物弹簧伸长 1 厘米。两个弹簧各自的长度 $ y $(厘米)与所挂重物质量 $ x $(千克)之间的函数图象如图所示。

(1)求 $ a $ 的值。
(2)求乙弹簧的长度 $ y $ 与 $ x $ 之间的函数表达式,并写出自变量 $ x $ 的取值范围。
(3)在弹性限度内,把两个质量相同的重物分别挂在甲、乙两个弹簧上,发现弹簧的长度恰好相同。若把这两个重物同时挂在乙弹簧上,求此时乙弹簧的长度。
答案: (1)由题意得,$a = 7×1 + 3 = 10$.
(2)设所求函数表达式为$y = kx + b(k\neq0)$.将点$(0,5)$,$(10,10)$的坐标代入,得$\begin{cases}b = 5\\10k + b = 10\end{cases}$,解得$\begin{cases}k = 0.5\\b = 5\end{cases}$,所以$y$与$x$之间的函数表达式为$y = 0.5x + 5(0\leq x\leq10)$.
(3)根据题意,得$3 + x = 0.5x + 5$,解得$x = 4$.因为$4 + 4 = 8$(千克),所以,当$x = 8$时,$y = 0.5×8 + 5 = 9$.
答:此时乙弹簧的长度为9厘米.
2. 随着科技的进步,传统的人工生产方式开始向自动化和智能化转变。某工厂工人每日上、下午各工作 3 小时,中间休息 2 小时。假设每名工人和每台机器人工作时的效率不变,一台机器人每日工作量 $ y_1 $(件),一名工人每日工作量 $ y_2 $(件)分别与机器人工作时间 $ x $(小时)之间的函数关系如图所示。

(1)求机器人的工作效率。
(2)当 $ 5 \leqslant x \leqslant 8 $ 时,求 $ y_2 $ 关于 $ x $ 的函数表达式。
(3)当 $ x = 8 $ 时,求一台机器人比一名工人多生产的产品数量。
答案: (1)由题意得,$45÷3 = 15$(件/小时),即机器人的工作效率为15(件/小时).
(2)由题图可知,一名工人的工作效率为$\frac{30}{3}=10$(件/小时),$\therefore$当$5\leq x\leq8$时,设$y_2$与$x$的函数表达式为$y_2 = 10x + b$,把$(5,30)$的坐标代入,得$10×5 + b = 30$,解得$b = - 20$,$\therefore y_2$与$x$的函数表达式为$y_2 = 10x - 20(5\leq x\leq8)$.
(3)当$x = 8$时,$15×8 = 120$,即一台机器人生产的产品数量是120件.$y_2 = 10×8 - 20 = 60$,即一名工人生产的产品数量是60件.$\therefore120 - 60 = 60$,$\therefore$当$x = 8$时,一台机器人比一名工人多生产产品60件.

查看更多完整答案,请扫码查看

关闭