第38页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
24. (本小题满分 12 分)如图,$O$是在$\triangle ABC$内部一点,$OC$平分$\angle ACB$,以$O$为圆心,$OC$为半径的圆经过点$B$,交$AC$于点$D$,连接$BO$并延长交$\overset{\frown}{CD}$于点$E$,连接$ED$并延长交$AB$于点$F$.
(1)求证:$OC// EF$.
(2)当$\angle EBF = 2\angle A$时.
①求$\angle EFB$的度数.
②若$F$是$AB$的中点,$\odot O$的半径为 1,求$AB$的长.

(1)求证:$OC// EF$.
(2)当$\angle EBF = 2\angle A$时.
①求$\angle EFB$的度数.
②若$F$是$AB$的中点,$\odot O$的半径为 1,求$AB$的长.
答案:
24 圆周角定理的推论+三角形中位线定理+相似三角形的判定与性质+勾股定理+垂径定理+平行线的判定
解:
(1)证明:如图1,

$\because OC$平分$\angle ACB$,$\therefore \angle 1 = \angle 2$.
$\because OC = OB$,
$\therefore \angle 2 = \angle 4$.
$\because \angle 4 = \angle 3$,
$\therefore \angle 1 = \angle 3$.
$\therefore OC // EF$.
(2)①由
(1)可设$\angle ADF = \angle 3 = \angle 1 = \angle 2 = x$,$\angle A = y$,
$\therefore \angle EFB = \angle A + \angle ADF = x + y$,$\angle EBF = 2\angle A = 2y$.
$\because \angle E = \angle DCB$,
$\therefore \angle E = 2x$.
在$\triangle BEF$中,$\angle E + \angle EFB + \angle EBF = 180^{\circ}$,
即$2x + (x + y) + 2y = 180^{\circ}$.
$\therefore x + y = 60^{\circ}$,即$\angle EFB = 60^{\circ}$.
②解法一(勾股定理法):
[第1步,连接$BD$,延长$CO$交$BD$于点$R$,交$AB$于点$N$,设$DF = m$,得$NR$长]
如图2,连接$BD$,延长$CO$交$BD$于点$R$,交$AB$于点$N$(巧作辅助线:连接弦,结合圆周角定理的推论构造直角三角形,为求线段长提供条件),

设$DF = m$.
$\because BE$是$\odot O$的直径,
$\therefore \angle BDE = 90^{\circ}$,即$BD \perp EF$.
$\because \angle EFB = 60^{\circ}$,
$\therefore BF = 2DF = 2m$,$BD = \sqrt{3}m$.
$\because OC // EF$,
$\therefore CR \perp BD$.
$\therefore DR = BR$,$CR // EF$.
$\therefore FN = BN$.
$\therefore NR = \frac{1}{2} DF = \frac{m}{2}$(提示:三角形中位线定理).
[第2步,求$OR$,$BR$长,在$Rt \triangle BOR$中,根据勾股定理建立方程,求出$m$的值,从而可得$AB$长]
$\because F$是$AB$的中点,
$\therefore AF = \frac{2}{3} AN$.
又$EF // CN$,
$\therefore CN = \frac{3}{2} DF = \frac{3m}{2}$.
$\therefore CR = CN - NR = m$.
$\therefore OR = m - 1$.
易知$BR = \frac{\sqrt{3}m}{2}$,
在$Rt \triangle BOR$中,$OR^2 + BR^2 = OB^2$.
即$(m - 1)^2 + (\frac{\sqrt{3}m}{2})^2 = 1$,
解得$m_1 = \frac{8}{7}$,$m_2 = 0$(舍去).
$\therefore AB = 4m = 4 × \frac{8}{7} = \frac{32}{7}$.
解法二(相似三角形法):
[第1步,连接$BD$,作$BM // EF$,设$DF = m$,得$DM$长]
如图3,连接$BD$,过点$B$作$BM // EF$交$DC$的延长线于点$M$(巧作辅助线:作平行线,构造直角三角形,为求线段长提供条件),

设$DF = m$,
$\because BE$是$\odot O$的直径,
$\therefore \angle BDE = 90^{\circ}$,即$BD \perp EF$.
$\because \angle EFB = 60^{\circ}$,
$\therefore BF = 2DF = 2m$,$BD = \sqrt{3}m$.
$\because BM // EF$,$F$是$AB$的中点,
$\therefore BM = 2DF = 2m$,$\angle DBM = \angle BDF = 90^{\circ}$.
$\therefore DM = \sqrt{BD^2 + BM^2} = \sqrt{(\sqrt{3}m)^2 + (2m)^2} = \sqrt{7}m$.
[第2步,求$BC$长,证明$\triangle OBC \sim \triangle CBM$,根据相似三角形的性质,求出$m$的值,从而可得$AB$长]
$\because OC // EF$,
$\therefore OC // BM$.
$\therefore \angle 1 = \angle M$,$\angle 2 = \angle 5$.
又$\because \angle 1 = \angle 2$,
$\therefore \angle M = \angle 5$.
$\therefore BC = CM = \frac{1}{2} DM = \frac{\sqrt{7}}{2}m$.
$\because \angle 2 = \angle 4 = \angle 5 = \angle M$,
$\therefore \triangle OBC \sim \triangle CBM$.
$\therefore \frac{BO}{BC} = \frac{BC}{BM}$,即$\frac{1}{\frac{\sqrt{7}}{2}m} = \frac{\frac{\sqrt{7}}{2}m}{2m}$,
解得$m_1 = \frac{8}{7}$,$m_2 = 0$(舍去).
$\therefore AB = 4m = 4 × \frac{8}{7} = \frac{32}{7}$.
(解析人:杜伟)
24 圆周角定理的推论+三角形中位线定理+相似三角形的判定与性质+勾股定理+垂径定理+平行线的判定
解:
(1)证明:如图1,
$\because OC$平分$\angle ACB$,$\therefore \angle 1 = \angle 2$.
$\because OC = OB$,
$\therefore \angle 2 = \angle 4$.
$\because \angle 4 = \angle 3$,
$\therefore \angle 1 = \angle 3$.
$\therefore OC // EF$.
(2)①由
(1)可设$\angle ADF = \angle 3 = \angle 1 = \angle 2 = x$,$\angle A = y$,
$\therefore \angle EFB = \angle A + \angle ADF = x + y$,$\angle EBF = 2\angle A = 2y$.
$\because \angle E = \angle DCB$,
$\therefore \angle E = 2x$.
在$\triangle BEF$中,$\angle E + \angle EFB + \angle EBF = 180^{\circ}$,
即$2x + (x + y) + 2y = 180^{\circ}$.
$\therefore x + y = 60^{\circ}$,即$\angle EFB = 60^{\circ}$.
②解法一(勾股定理法):
[第1步,连接$BD$,延长$CO$交$BD$于点$R$,交$AB$于点$N$,设$DF = m$,得$NR$长]
如图2,连接$BD$,延长$CO$交$BD$于点$R$,交$AB$于点$N$(巧作辅助线:连接弦,结合圆周角定理的推论构造直角三角形,为求线段长提供条件),
设$DF = m$.
$\because BE$是$\odot O$的直径,
$\therefore \angle BDE = 90^{\circ}$,即$BD \perp EF$.
$\because \angle EFB = 60^{\circ}$,
$\therefore BF = 2DF = 2m$,$BD = \sqrt{3}m$.
$\because OC // EF$,
$\therefore CR \perp BD$.
$\therefore DR = BR$,$CR // EF$.
$\therefore FN = BN$.
$\therefore NR = \frac{1}{2} DF = \frac{m}{2}$(提示:三角形中位线定理).
[第2步,求$OR$,$BR$长,在$Rt \triangle BOR$中,根据勾股定理建立方程,求出$m$的值,从而可得$AB$长]
$\because F$是$AB$的中点,
$\therefore AF = \frac{2}{3} AN$.
又$EF // CN$,
$\therefore CN = \frac{3}{2} DF = \frac{3m}{2}$.
$\therefore CR = CN - NR = m$.
$\therefore OR = m - 1$.
易知$BR = \frac{\sqrt{3}m}{2}$,
在$Rt \triangle BOR$中,$OR^2 + BR^2 = OB^2$.
即$(m - 1)^2 + (\frac{\sqrt{3}m}{2})^2 = 1$,
解得$m_1 = \frac{8}{7}$,$m_2 = 0$(舍去).
$\therefore AB = 4m = 4 × \frac{8}{7} = \frac{32}{7}$.
解法二(相似三角形法):
[第1步,连接$BD$,作$BM // EF$,设$DF = m$,得$DM$长]
如图3,连接$BD$,过点$B$作$BM // EF$交$DC$的延长线于点$M$(巧作辅助线:作平行线,构造直角三角形,为求线段长提供条件),
设$DF = m$,
$\because BE$是$\odot O$的直径,
$\therefore \angle BDE = 90^{\circ}$,即$BD \perp EF$.
$\because \angle EFB = 60^{\circ}$,
$\therefore BF = 2DF = 2m$,$BD = \sqrt{3}m$.
$\because BM // EF$,$F$是$AB$的中点,
$\therefore BM = 2DF = 2m$,$\angle DBM = \angle BDF = 90^{\circ}$.
$\therefore DM = \sqrt{BD^2 + BM^2} = \sqrt{(\sqrt{3}m)^2 + (2m)^2} = \sqrt{7}m$.
[第2步,求$BC$长,证明$\triangle OBC \sim \triangle CBM$,根据相似三角形的性质,求出$m$的值,从而可得$AB$长]
$\because OC // EF$,
$\therefore OC // BM$.
$\therefore \angle 1 = \angle M$,$\angle 2 = \angle 5$.
又$\because \angle 1 = \angle 2$,
$\therefore \angle M = \angle 5$.
$\therefore BC = CM = \frac{1}{2} DM = \frac{\sqrt{7}}{2}m$.
$\because \angle 2 = \angle 4 = \angle 5 = \angle M$,
$\therefore \triangle OBC \sim \triangle CBM$.
$\therefore \frac{BO}{BC} = \frac{BC}{BM}$,即$\frac{1}{\frac{\sqrt{7}}{2}m} = \frac{\frac{\sqrt{7}}{2}m}{2m}$,
解得$m_1 = \frac{8}{7}$,$m_2 = 0$(舍去).
$\therefore AB = 4m = 4 × \frac{8}{7} = \frac{32}{7}$.
(解析人:杜伟)
查看更多完整答案,请扫码查看