2025年启东中学作业本九年级数学上册苏科版连淮专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年启东中学作业本九年级数学上册苏科版连淮专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年启东中学作业本九年级数学上册苏科版连淮专版》

1.(2024·淮安区月考)当用公式法解方程$2x^{2}-1= 3x$时,$b^{2}-4ac$的值为 (
C
)
A.2
B.-3
C.17
D.-1
答案: C
2.(2024·海陵区一模)一元二次方程$x^{2}+x-1= 0$的解是
$ x_{1}=\frac{-1+\sqrt{5}}{2}, x_{2}=\frac{-1-\sqrt{5}}{2} $
.
答案: $ x_{1}=\frac{-1+\sqrt{5}}{2}, x_{2}=\frac{-1-\sqrt{5}}{2} $
3.用公式法解下列方程:
(1)$x^{2}-3x-7= 0;$
(2)$3x^{2}+1= 4x;$
(3)(2023·无锡)$2x^{2}+x-2= 0;$
(4)$3x^{2}+5(2x+1)= 0.$
答案:
(1) $ x_{1}=\frac{3+\sqrt{37}}{2}, x_{2}=\frac{3-\sqrt{37}}{2} $
(2) $ x_{1}=1, x_{2}=\frac{1}{3} $
(3) $ x_{1}=\frac{-1+\sqrt{17}}{4}, x_{2}=\frac{-1-\sqrt{17}}{4} $
(4) $ x_{1}=\frac{-5+\sqrt{10}}{3}, x_{2}=\frac{-5-\sqrt{10}}{3} $
4.小明在解方程$x^{2}-5x= 1$时出现了错误,他的解答过程如下:
$\because a= 1,b= -5,c= 1$,(第一步)
$\therefore b^{2}-4ac= (-5)^{2}-4×1×1= 21$,(第二步)
$\therefore x= \frac {5\pm \sqrt {21}}{2}$,(第三步)
$\therefore x_{1}= \frac {5+\sqrt {21}}{2},x_{2}= \frac {5-\sqrt {21}}{2}$.(第四步)
(1)小明的解答过程是从第
步开始出错的,其错误原因是
原方程没有化成一般形式
;
(2)写出此题正确的解答过程.
解: $\because a=1, b=-5, c=-1 $,
$ \therefore b^{2}-4 a c=(-5)^{2}-4 × 1 ×(-1)=29 $,
$ \therefore x=\frac{5 \pm \sqrt{29}}{2}, \therefore x_{1}=\frac{5+\sqrt{29}}{2}, x_{2}=\frac{5-\sqrt{29}}{2} $.
答案:
(1) 一 原方程没有化成一般形式
(2) 解: $ \because a=1, b=-5, c=-1 $,
$ \therefore b^{2}-4 a c=(-5)^{2}-4 × 1 ×(-1)=29 $,
$ \therefore x=\frac{5 \pm \sqrt{29}}{2}, \therefore x_{1}=\frac{5+\sqrt{29}}{2}, x_{2}=\frac{5-\sqrt{29}}{2} $.
5.(2024·东海县期中)关于x的一元二次方程$ax^{2}+bx+c= 0的两根分别为x_{1}= $$\frac {-b+\sqrt {b^{2}+4}}{2},x_{2}= \frac {-b-\sqrt {b^{2}+4}}{2}$,下列判断一定正确的是 (
D
)
A.$a= -1$
B.$c= 1$
C.$ac= 1$
D.$\frac {c}{a}= -1$
答案: D
6.(2024·惠山区期中)若最简二次根式$\sqrt {m^{2}-2}与\sqrt {5m+4}$是同类二次根式,则$m= $
6
.
答案: 6

查看更多完整答案,请扫码查看

关闭