2025年启东中学作业本九年级数学上册苏科版连淮专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年启东中学作业本九年级数学上册苏科版连淮专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年启东中学作业本九年级数学上册苏科版连淮专版》

9.如图,⊙O的弦AB,CD的延长线相交于点P,且AB= CD,求证:PB= PD.
答案:
证明:连接 $AC$,如答图。
D7C第9题答图
$\because AB = CD$,$\therefore \overset{\frown}{AB} = \overset{\frown}{CD}$,$\therefore \overset{\frown}{AB} + \overset{\frown}{BD} = \overset{\frown}{CD} + \overset{\frown}{BD}$,
即 $\overset{\frown}{AD} = \overset{\frown}{BC}$,$\therefore \angle A = \angle C$,$\therefore PA = PC$,
$\therefore PA - AB = PC - CD$,
即 $PB = PD$。
10.(2024·赣榆区月考)如图,AB为⊙O的直径,CD为弦,CD⊥AB于点E,连接DO并延长交⊙O于点F,连接AF交CD于点G,连接AC,且AC//DF.
(1)求证:CG= AG;
(2)若AB= 12,求∠CAO的度数和DG的长.
答案:

(1) 证明:$\because AC// DF$,$\therefore \angle CDF = \angle ACD$。
$\because \angle CAF = \angle CDF$,
$\therefore \angle ACD = \angle CAF$,$\therefore AG = CG$。
(2) 解:如答图,连接 $CO$。
第10题答图
$\because AB\perp CD$,$\therefore \overset{\frown}{AC} = \overset{\frown}{AD}$,$CE = DE$。
$\because \angle DCA = \angle CAF$,$\therefore \overset{\frown}{AD} = \overset{\frown}{CF}$,
$\therefore \overset{\frown}{AC} = \overset{\frown}{AD} = \overset{\frown}{CF}$,$\therefore \angle AOD = \angle AOC = \angle COF$。
$\because DF$ 是直径,$\therefore \angle AOD = \angle AOC = \angle COF = 60^{\circ}$。
$\because OA = OC$,$\therefore \triangle AOC$ 是等边三角形,
$\therefore AC = AO = \frac{1}{2}AB = 6$,$\angle CAO = 60^{\circ}$。
$\because CE\perp AO$,$\therefore AE = EO = 3$,$\angle ACD = 30^{\circ}$,
$\therefore CE = 3\sqrt{3} = DE$。
$\because AG^{2} = GE^{2} + AE^{2}$,$\therefore AG^{2} = (3\sqrt{3} - AG)^{2} + 3^{2}$,
$\therefore AG = 2\sqrt{3}$,$\therefore GE = \sqrt{3}$,
$\therefore DG = DE + GE = 4\sqrt{3}$。
11.(2024·姑苏区期中)如图,在四边形ABCD中,∠B= ∠D,AB= CD,AB与DC不平行,过点A作AE//DC,交△ABC的外接圆⊙O于点E,连接CE,OA.求证:
(1)四边形ADCE为平行四边形;
(2)AO平分∠BAE.
答案:

(1) 证明:$\because \angle B = \angle E$,$\angle B = \angle D$,$\therefore \angle E = \angle D$。
$\because AE// CD$,$\therefore \angle E + \angle ECD = 180^{\circ}$,
$\therefore \angle D + \angle ECD = 180^{\circ}$,$\therefore CE// AD$,
$\therefore$ 四边形 $ADCE$ 为平行四边形。
(2) 过点 $O$ 作 $OG\perp AB$ 于点 $G$,$OH\perp AE$ 于点 $H$,如答图。
$\because$ 四边形 $ADCE$ 为平行四边形,$\therefore AE = CD$。
$\because AB = CD$,$\therefore AE = AB$。
$\because \angle AHO = \angle AGO = 90^{\circ}$,
$\therefore AH = \frac{1}{2}AE$,$AG = \frac{1}{2}AB$,$\therefore AH = AG$。
在 $Rt\triangle AHO$ 与 $Rt\triangle AGO$ 中,$\begin{cases}AO = AO, \\ AH = AG,\end{cases}$
$\therefore Rt\triangle AHO\cong Rt\triangle AGO(HL)$,
$\therefore \angle HAO = \angle GAO$,$\therefore AO$ 平分 $\angle BAE$。
第11题答图

查看更多完整答案,请扫码查看

关闭