第77页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
10. (15分)如图,AB是半圆O的直径,C,D是半圆O上的两点,且$OD// BC$,OD与AC相交于点E.
(1)若$∠B= 70^{\circ}$,求$∠CAD$的度数;
(2)若$AB= 5$,$AC= 4$,求DE的长.

(1)若$∠B= 70^{\circ}$,求$∠CAD$的度数;
(2)若$AB= 5$,$AC= 4$,求DE的长.
答案:
解:
(1) $\because AB$ 是半圆 $O$ 的直径,$\therefore \angle ACB = 90^{\circ}$.$\because OD // BC$,$\therefore \angle AOD = \angle B = 70^{\circ}, \angle AEO = \angle ACB = 90^{\circ}$,$\therefore OD \perp AC, \therefore \overset{\frown}{AD} = \overset{\frown}{CD}$,$\therefore \angle CAD = \frac{1}{2}\angle AOD = 35^{\circ}$.
(2) $\because OD \perp AC, \therefore AE = CE = \frac{1}{2}AC = 2$.在 $Rt\triangle AOE$ 中,$OE = \sqrt{OA^{2} - AE^{2}} = \sqrt{(\frac{5}{2})^{2} - 2^{2}} = \frac{3}{2}$,$\therefore DE = OD - OE = \frac{5}{2} - \frac{3}{2} = 1$.
(1) $\because AB$ 是半圆 $O$ 的直径,$\therefore \angle ACB = 90^{\circ}$.$\because OD // BC$,$\therefore \angle AOD = \angle B = 70^{\circ}, \angle AEO = \angle ACB = 90^{\circ}$,$\therefore OD \perp AC, \therefore \overset{\frown}{AD} = \overset{\frown}{CD}$,$\therefore \angle CAD = \frac{1}{2}\angle AOD = 35^{\circ}$.
(2) $\because OD \perp AC, \therefore AE = CE = \frac{1}{2}AC = 2$.在 $Rt\triangle AOE$ 中,$OE = \sqrt{OA^{2} - AE^{2}} = \sqrt{(\frac{5}{2})^{2} - 2^{2}} = \frac{3}{2}$,$\therefore DE = OD - OE = \frac{5}{2} - \frac{3}{2} = 1$.
11. (15分)如图,在单位长度为1的正方形组成的网格中建立平面直角坐标系,一条圆弧经过网格点$A(1,4)$,$B(-3,4)$,$C(-4,3)$,请在网格图中进行如下操作:
(1)用直尺画出该圆弧所在圆的圆心M的位置,则圆心点M的坐标为______;
(2)若扇形MAC是一个圆锥的侧面展开图,求该圆锥底面圆的半径r.

(1)用直尺画出该圆弧所在圆的圆心M的位置,则圆心点M的坐标为______;
(2)若扇形MAC是一个圆锥的侧面展开图,求该圆锥底面圆的半径r.
答案:
解:
(1) 圆心 $M$ 的位置如答图所示 $(-1,1)$
(2) 如答图,连接 $MA, MC, AC$.根据勾股定理,得 $MA = MC = \sqrt{2^{2} + 3^{2}} = \sqrt{13}$,$AC = \sqrt{5^{2} + 1^{2}} = \sqrt{26}$,$\therefore MA^{2} + MC^{2} = AC^{2}$,$\therefore \triangle ACM$ 为等腰直角三角形,$\angle AMC = 90^{\circ}$.根据题意,得 $2\pi r = \frac{90\pi × \sqrt{13}}{180}$,解得 $r = \frac{\sqrt{13}}{4}$,即该圆锥的底面圆的半径 $r$ 为 $\frac{\sqrt{13}}{4}$.
解:
(1) 圆心 $M$ 的位置如答图所示 $(-1,1)$
(2) 如答图,连接 $MA, MC, AC$.根据勾股定理,得 $MA = MC = \sqrt{2^{2} + 3^{2}} = \sqrt{13}$,$AC = \sqrt{5^{2} + 1^{2}} = \sqrt{26}$,$\therefore MA^{2} + MC^{2} = AC^{2}$,$\therefore \triangle ACM$ 为等腰直角三角形,$\angle AMC = 90^{\circ}$.根据题意,得 $2\pi r = \frac{90\pi × \sqrt{13}}{180}$,解得 $r = \frac{\sqrt{13}}{4}$,即该圆锥的底面圆的半径 $r$ 为 $\frac{\sqrt{13}}{4}$.
12. (16分)(2024·绥化)如图①,O是正方形ABCD对角线上一点,以点O为圆心,OC长为半径的$\odot O$与AD相切于点E,与AC相交于点F.
(1)求证:AB与$\odot O$相切;
(2)若正方形ABCD的边长为$\sqrt{2}+1$,求$\odot O$的半径;
(3)如图②,在(2)的条件下,若M是半径OC上的一个动点,过点M作$MN\perp OC交\overparen{CE}$于点N.当$CM:FM= 1:4$时,求CN的长.

(1)求证:AB与$\odot O$相切;
(2)若正方形ABCD的边长为$\sqrt{2}+1$,求$\odot O$的半径;
(3)如图②,在(2)的条件下,若M是半径OC上的一个动点,过点M作$MN\perp OC交\overparen{CE}$于点N.当$CM:FM= 1:4$时,求CN的长.
答案:
(1) 证明:如答图①,连接 $OE$,过点 $O$ 作 $OG \perp AB$ 于点 $G$.
$\because \odot O$ 与 $AD$ 相切于点 $E, \therefore OE \perp AD$.$\because$ 四边形 $ABCD$ 是正方形,$AC$ 是正方形的对角线,$\therefore \angle BAC = \angle DAC = 45^{\circ}, \therefore OE = OG$.$\because OE$ 为 $\odot O$ 的半径,$\therefore OG$ 为 $\odot O$ 的半径.$\because OG \perp AB, \therefore AB$ 与 $\odot O$ 相切.
(2) 解:如答图①,$\because AC$ 为正方形 $ABCD$ 的对角线,$\therefore \angle DAC = 45^{\circ}$.$\because \odot O$ 与 $AD$ 相切于点 $E, \therefore \angle AEO = 90^{\circ}$,$\therefore AE = OE$,设 $AE = OE = OC = OF = R$,在 $Rt\triangle AEO$ 中,$\because AE^{2} + EO^{2} = AO^{2}, \therefore AO^{2} = R^{2} + R^{2}$.$\because R > 0, \therefore AO = \sqrt{2}R$.又 $\because$ 正方形 $ABCD$ 的边长为 $\sqrt{2} + 1$,$\therefore$ 在 $Rt\triangle ADC$ 中,由勾股定理,得 $AC = \sqrt{AD^{2} + CD^{2}} = \sqrt{2}(\sqrt{2} + 1)$.$\because OA + OC = AC, \therefore \sqrt{2}R + R = \sqrt{2}(\sqrt{2} + 1), \therefore R = \sqrt{2}$,即 $\odot O$ 的半径为 $\sqrt{2}$.
(3) 解:如答图②,连接 $FN, ON$.
设 $CM = k, \because CM:FM = 1:4, \therefore CF = 5k$,$\therefore OC = ON = 2.5k, \therefore OM = OC - CM = 1.5k$.在 $Rt\triangle OMN$ 中,由勾股定理,得 $MN = \sqrt{ON^{2} - OM^{2}} = 2k$,在 $Rt\triangle CMN$ 中,由勾股定理,得 $CN = \sqrt{CM^{2} + MN^{2}} = \sqrt{5}k$.又 $\because FC = 5k = 2R = 2\sqrt{2}$,$\therefore k = \frac{2\sqrt{2}}{5}, \therefore CN = \sqrt{5} × \frac{2\sqrt{2}}{5} = \frac{2\sqrt{10}}{5}$.
(1) 证明:如答图①,连接 $OE$,过点 $O$ 作 $OG \perp AB$ 于点 $G$.
(2) 解:如答图①,$\because AC$ 为正方形 $ABCD$ 的对角线,$\therefore \angle DAC = 45^{\circ}$.$\because \odot O$ 与 $AD$ 相切于点 $E, \therefore \angle AEO = 90^{\circ}$,$\therefore AE = OE$,设 $AE = OE = OC = OF = R$,在 $Rt\triangle AEO$ 中,$\because AE^{2} + EO^{2} = AO^{2}, \therefore AO^{2} = R^{2} + R^{2}$.$\because R > 0, \therefore AO = \sqrt{2}R$.又 $\because$ 正方形 $ABCD$ 的边长为 $\sqrt{2} + 1$,$\therefore$ 在 $Rt\triangle ADC$ 中,由勾股定理,得 $AC = \sqrt{AD^{2} + CD^{2}} = \sqrt{2}(\sqrt{2} + 1)$.$\because OA + OC = AC, \therefore \sqrt{2}R + R = \sqrt{2}(\sqrt{2} + 1), \therefore R = \sqrt{2}$,即 $\odot O$ 的半径为 $\sqrt{2}$.
(3) 解:如答图②,连接 $FN, ON$.
查看更多完整答案,请扫码查看