2026年全优中考系统总复习数学河北专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年全优中考系统总复习数学河北专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2026年全优中考系统总复习数学河北专版》

第85页
1. 探索并完成相应的任务.
答案:
1. 解:任务一:AC
任务二:设计方案:如图,找到堤岸上与AB的交点E(测$\angle AED = 90^{\circ}$),从点E出发,沿堤岸向西走到点D,此时恰好测得$\angle EDB = 45^{\circ}$,要知道AB的距离,只需要测量出ED与AE的长度即可。理由:
$\because AB\perp ED$,$\therefore \angle BED = 90^{\circ}$,$\because \angle EDB = 45^{\circ}$,$\therefore \angle EBD = 180^{\circ} - 90^{\circ} - 45^{\circ} = 45^{\circ}$,$\therefore \angle EDB = \angle EBD$,$\therefore BE = ED$,
$\because AB = AE + BE$,$\therefore AB = AE + ED$。(答案不唯一)
堤岸A凉亭
2. 【问题情境】数学兴趣小组利用特殊的等腰三角形——等边三角形展开研究.
【数学思考】如图 1,$\triangle ABC$与$\triangle ADE$都是等边三角形,连接$BD$,$CE$.
(1)当点$D$,$E$,$C$在一条直线上时,$BD$与$CE$的数量关系是
$BD = CE$
,$\angle BDC=$
60
$^{\circ}$;
【深入探究】换成两个全等的等边三角形继续研究.如图 2,$\triangle ABC$和$\triangle AMN$都是等边三角形,且$\triangle ABC\cong\triangle AMN$,$AB = 6$.
(2)连接$MB$,$CN$并分别延长交于点$F$,试猜想$MF$和$CF$的数量关系,并说明理由;
(3)如图 3,将$\triangle AMN$绕点$A$按顺时针方向旋转,当$\angle MAB = 90^{\circ}$时,连接$CN$,$BM$,$CM$,求$\triangle ACM$的面积.
答案:
2. 解:
(1)$BD = CE$ 60 提示:$\because \triangle ABC$与$\triangle ADE$都是等边三角形,$\therefore AD = AE$,$AB = AC$,$\angle DAE = \angle BAC = 60^{\circ}$,$\therefore \angle BAD = \angle CAE$,
$\therefore \triangle BAD\cong\triangle CAE(SAS)$,
$\therefore BD = CE$,$\angle ADB = \angle AEC = 180^{\circ} - \angle AED = 180^{\circ} - 60^{\circ} = 120^{\circ}$。
$\therefore \angle BDC = \angle ADB - \angle ADE = 120^{\circ} - 60^{\circ} = 60^{\circ}$;
(2)$MF = CF$。理由如下:$\because \triangle ABC$和$\triangle AMN$都是等边三角形,$\therefore AB = AC$,$AM = AN$,$\angle ABC = \angle ANM = 60^{\circ}$,$\angle BAC = \angle MAN$,$\therefore \angle NAC = \angle MAB$,
在$\triangle MAB$和$\triangle NAC$中,
$\begin{cases}AB = AC\\\angle MAB = \angle NAC\\AM = AN\end{cases}$
$\therefore \triangle MAB\cong\triangle NAC(SAS)$,
$\therefore \angle MBA = \angle NCA$,由$\triangle ABC\cong\triangle AMN$有$AN = AC$,$\therefore \angle NCA = \angle CNA$,
$\therefore \angle MBA = \angle CNA$,
$\because \angle ABC = \angle ANM = 60^{\circ}$,
$\therefore 180^{\circ} - (\angle MBA + \angle ABC) = 180^{\circ} - (\angle CNA + \angle ANM)$,$\therefore \angle FBC = \angle FNM$,
$\because \triangle ABC\cong\triangle AMN$,
$\therefore BC = MN$,
在$\triangle FBC$和$\triangle FNM$中,
$\begin{cases}\angle FBC = \angle FNM\\\angle F = \angle F\\BC = NM\end{cases}$
$\therefore \triangle FBC\cong\triangle FNM(AAS)$,
$\therefore MF = CF$;
(3)如图,过点M作$MH\perp CA$交CA的延长线于点H,$\because \triangle ABC$和$\triangle AMN$都是等边三角形,且$\triangle ABC\cong\triangle AMN$,$AB = 6$,$\therefore AM = AN = AB = AC = 6$,$\angle BAC = 60^{\circ}$,$\angle BAM = 90^{\circ}$,
$\therefore \angle MAC = 150^{\circ}$,$\therefore \angle MAH = 30^{\circ}$,
$\therefore MH = \frac{1}{2}AM = 3$,$\therefore \triangle ACM$的面积$= \frac{1}{2}AC· MH = \frac{1}{2}×6×3 = 9$。

12

查看更多完整答案,请扫码查看

关闭