2025年绿色通道45分钟课时作业与单元测评高中数学必修第一册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年绿色通道45分钟课时作业与单元测评高中数学必修第一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



1. 已知$\sin 25.3^{\circ}=a$,则$\cos 64.7^{\circ}$等于(
A
)

A.$a$
B.$-a$
C.$a^{2}$
D.$\sqrt{1 - a^{2}}$
答案: 1.A $\cos 64.7^{\circ}=\cos(90^{\circ}-25.3^{\circ})=\sin 25.3^{\circ}=a$.
2. 若$\alpha \in \left(\pi,\dfrac{3\pi}{2}\right)$,则$\sqrt{1 - \sin^{2}\left(\dfrac{3\pi}{2} - \alpha\right)} =$(
B
)

A.$\sin \alpha$
B.$-\sin \alpha$
C.$\cos \alpha$
D.$-\cos \alpha$
答案: 2.B $\because a\in(\pi,\frac{3\pi}{2})$,$\therefore \sin a<0$,$\therefore\sqrt{1-\sin^{2}(\frac{3\pi}{2}-a)}=$
$\sqrt{1-\cos^{2}a}=\sqrt{\sin^{2}a}=-\sin a$.
3. 如图,点$A$为单位圆上一点,$\angle xOA = \dfrac{\pi}{4}$,已知点$A$沿单位圆按逆时针方向旋转$\alpha$到点$B\left(\dfrac{3}{5},\dfrac{4}{5}\right)$,则$\sin \left(\alpha - \dfrac{\pi}{4}\right)$的值为(
C
)

A.$\dfrac{3}{5}$
B.$\dfrac{4}{5}$
C.$-\dfrac{3}{5}$
D.$-\dfrac{4}{5}$
答案: 3.C 根据题意,利用三角函数的定义,可得$\cos(a+\frac{\pi}{4})=\frac{3}{5}$,所
以$\sin(a-\frac{\pi}{4})=\sin[(a+\frac{\pi}{4})-\frac{\pi}{2}]=-\cos(a+\frac{\pi}{4})$
$=-\frac{3}{5}$.
4. (多选)已知$x \in \mathbf{R}$,则下列等式恒成立的是(
AB
)

A.$\sin (3\pi - x) = \sin x$
B.$\sin \dfrac{\pi - x}{2} = \cos \dfrac{x}{2}$
C.$\cos \left(\dfrac{5\pi}{2} + 3x\right) = \sin 3x$
D.$\cos \left(\dfrac{3\pi}{2} + 2x\right) = -\sin 2x$
答案: 4.AB $\sin(3\pi-x)=\sin(\pi-x)=\sin x$,A正确;$\sin\frac{\pi-x}{2}=$
$\sin(\frac{\pi}{2}-\frac{x}{2})=\cos\frac{x}{2}$,B正确;$\cos(\frac{5\pi}{2}+3x)=$
$\cos(\frac{\pi}{2}+3x)=-\sin 3x$,C错误;$\cos(\frac{3\pi}{2}+2x)=\sin 2x$,D
错误.
5. 已知$0 < \alpha < \dfrac{\pi}{2}$,且$\sin \left(\alpha - \dfrac{\pi}{3}\right) = \dfrac{1}{4}$,则$\sin \left(\dfrac{5\pi}{6} - \alpha\right) =$(
C
)

A.$-\dfrac{\sqrt{15}}{4}$
B.$-\dfrac{1}{4}$
C.$\dfrac{\sqrt{15}}{4}$
D.$\dfrac{1}{4}$
答案: 5.C 因为$0<a<\frac{\pi}{2}$,所以$-\frac{\pi}{3}<a-\frac{\pi}{3}<\frac{\pi}{6}$,又
$\sin(a-\frac{\pi}{3})=\frac{1}{4}$,所以$\cos(a-\frac{\pi}{3})=\sqrt{1-(\frac{1}{4})^{2}}=$
$\frac{\sqrt{15}}{4}$,所以$\sin(\frac{5\pi}{6}-a)=\sin(\frac{\pi}{2}+\frac{\pi}{3}-a)=\cos(\frac{\pi}{3}-$
$a)=\cos(a-\frac{\pi}{3})=\frac{\sqrt{15}}{4}$
6. 已知函数$f(x) = \dfrac{\cos (\pi - x)}{\sin^{2}(\pi - x) - 1}$,若$f\left(\dfrac{\pi}{2} + \alpha\right) = \dfrac{3}{2}$,则$\sin \alpha =$(
A
)

A.$-\dfrac{2}{3}$
B.$\dfrac{2}{3}$
C.$-\dfrac{\sqrt{5}}{3}$
D.$\dfrac{\sqrt{5}}{3}$
答案: 6.A 函数$f(x)=\frac{\cos(\pi-x)}{\sin^{2}(\pi-x)-1}=\frac{-\cos x}{\sin^{2}x-1}=\frac{-\cos x}{-\cos^{2}x}=\frac{\cos x}{\cos^{2}x}=\frac{1}{\cos x}$,因为$f(\frac{\pi}{2}+a)=\frac{3}{2}$,所以$\frac{1}{\cos(\frac{\pi}{2}+a)}=\frac{1}{-\sin a}=$
$\frac{3}{2}$,解得$\sin a=-\frac{2}{3}$.
7. 若$\cos \alpha = \dfrac{1}{3}$,且$\alpha$是第四象限角,则$\sin \alpha =$
$-\frac{2\sqrt{2}}{3}$
,$\cos \left(\alpha + \dfrac{3\pi}{2}\right) =$
$\frac{2\sqrt{2}}{3}$
答案: 7.$-\frac{2\sqrt{2}}{3}$ $\frac{2\sqrt{2}}{3}$
解析 因为$a$是第四象限角,所以$\sin a=-\sqrt{1-\cos^{2}a}=$
$-\frac{2\sqrt{2}}{3}$,于是$\cos(a+\frac{3\pi}{2})=-\cos(a+\frac{\pi}{2})=\sin a=-\frac{2\sqrt{2}}{3}$
8. (2025·山东济宁一中月考)若$\sin \left(\dfrac{\pi}{2} + \theta\right) = \dfrac{3}{7}$,则$\cos^{2}\left(\dfrac{\pi}{2} - \theta\right) =$
$\frac{40}{49}$
答案: 8.$\frac{40}{49}$
解析 $\sin(\frac{\pi}{2}+\theta)=\cos\theta=\frac{3}{7}$,则$\cos^{2}(\frac{\pi}{2}-\theta)=\sin^{2}\theta=$
$1-\cos^{2}\theta=1-\frac{9}{49}=\frac{40}{49}$
9. 化简:$\dfrac{\sin (540^{\circ} - x)}{\cos (900^{\circ} - x)} · \dfrac{\tan (810^{\circ} - x)}{\tan (450^{\circ} - x)} · \dfrac{\cos (360^{\circ} - x)}{\sin (-x)}$。
答案: 9.解 原式$=\frac{\sin(180^{\circ}-x)}{\cos(180^{\circ}-x)}·\frac{\tan(90^{\circ}-x)}{\tan(90^{\circ}-x)}·\frac{\cos(-x)}{\sin(-x)}=$
$\frac{\sin x}{-\cos x}·\frac{\cos x}{-\sin x}=1$.

查看更多完整答案,请扫码查看

关闭