2025年绿色通道45分钟课时作业与单元测评高中数学必修第一册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年绿色通道45分钟课时作业与单元测评高中数学必修第一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第9页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
1. 已知全集$ U = \{ -1,1,2,3\} $,$ A = \{ x\in\mathbf{R}\mid x^{2}=1\} $,则$ \complement_{U}A = $(
A.$\{ -1,3\}$
B.$\{ 2,3\}$
C.$\{ -1,2,3\}$
D.$\{ 1,2,3\}$
B
)A.$\{ -1,3\}$
B.$\{ 2,3\}$
C.$\{ -1,2,3\}$
D.$\{ 1,2,3\}$
答案:
1.B 由已知得A={-1,1},
∴∁UA={2,3}.
∴∁UA={2,3}.
2. 已知全集$ U = \{ -1,0,1,2,3,4\} $,集合$ A = \{ -1,0,2\} $,$ B = \{ -1,0,3\} $,则集合$ A\cup(\complement_{U}B) = $(
A.$\{ 1,2\}$
B.$\{ -1,0,1,4\}$
C.$\{ -1,0,1,2,4\}$
D.$\{ -1,0,1,2\}$
C
)A.$\{ 1,2\}$
B.$\{ -1,0,1,4\}$
C.$\{ -1,0,1,2,4\}$
D.$\{ -1,0,1,2\}$
答案:
2.C 根据题意由补集运算可知∁UB = {1,2,4},又A = {-1,0,2},所以A ∪ (∁UB)={-1,0,1,2,4}.
3. 已知集合$ A = \{ x\mid -2\lt x\lt1\} $,$ B = \{ x\mid x\leqslant2\} $,则集合$ \{ x\mid x\leqslant -2 或 x\geqslant1\} = $(
A.$ A\cup B$
B.$ A\cap B$
C.$ \complement_{\mathbf{R}}(A\cup B)$
D.$ \complement_{\mathbf{R}}(A\cap B)$
D
)A.$ A\cup B$
B.$ A\cap B$
C.$ \complement_{\mathbf{R}}(A\cup B)$
D.$ \complement_{\mathbf{R}}(A\cap B)$
答案:
3.D 因为A={x | -2 < x < 1},B={x | x ≤ 2},所以A ∪ B = {x | x ≤ 2},A ∩ B = {x | -2 < x < 1},所以∁R(A ∪ B) = {x | x > 2},∁R(A ∩ B)={x | x ≤ -2或x ≥ 1}. 故选D.
4. 已知全集$ U = \mathbf{R} $,集合$ A = \{ x\mid x\geqslant3 或 x\leqslant0\} $,$ B = \{ x\mid 1\lt x\leqslant3\} $,则如图所示的阴影部分表示的集合为(
A.$\{ x\mid 0\leqslant x\lt1\}$
B.$\{ x\mid 0\lt x\leqslant3\}$
C.$\{ x\mid 0\lt x\leqslant1\}$
D.$\{ x\mid 1\leqslant x\leqslant3\}$
C
)A.$\{ x\mid 0\leqslant x\lt1\}$
B.$\{ x\mid 0\lt x\leqslant3\}$
C.$\{ x\mid 0\lt x\leqslant1\}$
D.$\{ x\mid 1\leqslant x\leqslant3\}$
答案:
4.C 因为A={x | x ≥ 3或x ≤ 0},B={x | 1 < x ≤ 3},所以A ∪ B = {x | x > 1或x ≤ 0},所以图中阴影部分表示的集合为∁U(A ∪ B)={x | 0 < x ≤ 1},故选C.
5. (多选)可以推出$ A\subseteq B $的是(
A.$ A\cap B = B$
B.$ A\cap(\complement_{U}B)=\varnothing$
C.$ A\cup B = B$
D.$ (\complement_{U}B)\subseteq(\complement_{U}A)$
BCD
)A.$ A\cap B = B$
B.$ A\cap(\complement_{U}B)=\varnothing$
C.$ A\cup B = B$
D.$ (\complement_{U}B)\subseteq(\complement_{U}A)$
答案:
5.BCD 对于A,因为A ∩ B = B,所以B ⊆ A,故错误;对于B,当A ∩ (∁UB)=∅时,有A ⊆ B,反之也成立,故正确;对于C,当A ∪ B = B时,有A ⊆ B,反之也成立,故正确;对于D,若(∁UB) ⊆ (∁UA),则A ⊆ B,反之也成立,故正确.故选BCD.
6. (多选)(2024·广东广州期末)设集合$ S = \{ x\mid -2\leqslant x\leqslant8\} $,$ T = \{ x\mid 0\lt x\lt4\} $,若集合$ P\subseteq(\complement_{\mathbf{R}}T)\cap S $,则$ P $可以是(
A.$\{ x\mid -2\leqslant x\leqslant0\}$
B.$\{ x\mid 5\leqslant x\leqslant7\}$
C.$\{ x\mid -2\leqslant x\leqslant8\}$
D.$\{ x\mid 1\leqslant x\leqslant5\}$
AB
)A.$\{ x\mid -2\leqslant x\leqslant0\}$
B.$\{ x\mid 5\leqslant x\leqslant7\}$
C.$\{ x\mid -2\leqslant x\leqslant8\}$
D.$\{ x\mid 1\leqslant x\leqslant5\}$
答案:
6.AB 因为S={x | -2 ≤ x ≤ 8},T={x | 0 < x < 4},所以∁RT={x | x ≤ 0或x ≥ 4},(∁RT) ∩ S={x | -2 ≤ x ≤ 0或4 ≤ x ≤ 8},因为集合P ⊆ (∁RT) ∩ S,所以集合P可以是选项A、B.
7. 已知全集$ U = \{ x\mid -2\lt x\leqslant5\} $,集合$ M = \{ x\mid -1\leqslant x\leqslant3\} $,则$ \complement_{U}M = $
{x | -2 < x < -1或3 < x ≤ 5}
。
答案:
7.{x | -2 < x < -1或3 < x ≤ 5}
解析
∵M={x | -1 ≤ x ≤ 3},U={x | -2 < x ≤ 5},
∴∁UM={x | -2 < x < -1或3 < x ≤ 5}.
解析
∵M={x | -1 ≤ x ≤ 3},U={x | -2 < x ≤ 5},
∴∁UM={x | -2 < x < -1或3 < x ≤ 5}.
8. 设全集$ U = \{ x\mid x 是三角形\} $,$ A = \{ x\mid x 是锐角三角形\} $,$ B = \{ x\mid x 是钝角三角形\} $,则$ (\complement_{U}A)\cap(\complement_{U}B) = $
{x | x是直角三角形}
。
答案:
8.{x | x是直角三角形}
解析 根据三角形的分类可知,∁UA = {x | x是直角三角形或钝角三角形},∁UB = {x | x是直角三角形或锐角三角形},所以(∁UA) ∩ (∁UB)={x | x是直角三角形}.
解析 根据三角形的分类可知,∁UA = {x | x是直角三角形或钝角三角形},∁UB = {x | x是直角三角形或锐角三角形},所以(∁UA) ∩ (∁UB)={x | x是直角三角形}.
9. 已知全集$ U = \{ -3,-2,-1,0,1,2,3\} $,$ A = \{ -1,0,1\} $,$ B = \{ -2,-1,0\} $。
(1) 求$ A\cap B $,$ A\cup B $;
(2) 求$ (\complement_{U}A)\cap B $,$ (\complement_{U}A)\cup(\complement_{U}B) $。
(1) 求$ A\cap B $,$ A\cup B $;
(2) 求$ (\complement_{U}A)\cap B $,$ (\complement_{U}A)\cup(\complement_{U}B) $。
答案:
9.解
(1)A={-1,0,1},B={-2,-1,0},则A ∩ B = {-1,0},A ∪ B = {-2,-1,0,1}.
(2)全集U={-3,-2,-1,0,1,2,3},则∁UA = {-3,-2,2,3},∁UB = {-3,1,2,3},所以(∁UA) ∩ B = {-2},(∁UA) ∪ (∁UB)={-3,-2,1,2,3}.
(1)A={-1,0,1},B={-2,-1,0},则A ∩ B = {-1,0},A ∪ B = {-2,-1,0,1}.
(2)全集U={-3,-2,-1,0,1,2,3},则∁UA = {-3,-2,2,3},∁UB = {-3,1,2,3},所以(∁UA) ∩ B = {-2},(∁UA) ∪ (∁UB)={-3,-2,1,2,3}.
查看更多完整答案,请扫码查看