2025年绿色通道45分钟课时作业与单元测评高中数学必修第一册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年绿色通道45分钟课时作业与单元测评高中数学必修第一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



1. 已知集合$ A = \{1,3,5\} $,$ B = \{x|x < 3\} $,则$ A \cap B = $(
D
)

A.$\{1,2,3,5\}$
B.$\{1,2,3\}$
C.$\{1,2\}$
D.$\{1\}$
答案: 1.D $A = \{ 1,3,5\},B = \{ x|x < 3\}$,所以$A \cap B = \{ 1\}$.
2. 设集合$ A = \{x|-1 < x < 3\} $,$ B = \{x|2 \leq x \leq 4\} $,则$ A \cup B = $(
D
)

A.$\{x|2 \leq x < 3\}$
B.$\{x|2 \leq x \leq 3\}$
C.$\{x|-1 < x < 4\}$
D.$\{x|-1 < x \leq 4\}$
答案: 2.D 因为集合$A = \{ x| - 1 < x < 3\},B = \{ x|2 \leq x \leq 4\}$,所以$A \cup B = \{ x| - 1 < x \leq 4\}$.
3. (2024·河北邢台一中月考)已知集合$ A = \{x|x = 3n + 2, n \in \mathbf{N}\} $,$ B = \{2,8,10,12,14\} $,则集合$ A \cap B $中元素的个数为 (
C
)

A.5
B.4
C.3
D.2
答案: 3.C $A = \{ x|x = 3n + 2,n \in N\} = \{ 2,5,8,11,14,17,·s\}$,显然$A \cap B = \{ 2,8,14\}$,故集合$A \cap B$中元素的个数为3.
4. 若$ A = \{x \in \mathbf{N}|1 \leq x \leq 10\} $,$ B = \{x \in \mathbf{R}|x^2 + x - 6 = 0\} $,则图中阴影部分表示的集合为 (
A
)


A.$\{2\}$
B.$\{3\}$
C.$\{-3,2\}$
D.$\{-2,3\}$
答案: 4.A 易知$A = \{ 1,2,3,4,5,6,7,8,9,10\},B = \{ - 3,2\}$,则题图中阴影部分表示的集合为$A \cap B = \{ 2\}$.
5. $ A = \{x|x \leq -1 或 x \geq 3\} $,$ B = \{x|a < x < 4\} $,若$ A \cup B = \mathbf{R} $,则实数$ a $的取值范围是 (
C
)

A.$ 3 \leq a < 4 $
B.$ -1 < a < 4 $
C.$ a \leq -1 $
D.$ a < -1 $
答案:
5.C 利用数轴(如图),若$A \cup B = R$,则$a \leq - 1$.
        
6. (多选)(2025·河南许昌期末)已知集合$ M = \{2, a^2\} $,$ P = \{-1, a\} $,若$ M \cup P $有三个元素,则实数$ a $的取值可以是 (
ACD
)

A.2
B.$-1$
C.0
D.1
答案: 6.ACD 集合$M = \{ 2,a^{2}\},P = \{ - 1,a\}$,$M \cup P$有三个元素,所以$a = a^{2}$或$a = 2$,解得$a = 0$或$a = 1$或$a = 2$,经检验均符合题意.
7. 已知集合$ A = \{x|-\frac{1}{2} \leq x \leq 3\} $,$ B = \{x \in \mathbf{Z}|x \leq 2\} $,则$ A \cap B = $
{0,1,2}
.
答案: 7.{0,1,2}
 解析 因为$A = \left\{ x \mid -\frac{1}{2} \leq x \leq 3\right\},B = \{ x \in Z \mid x \leq 2\}$,
 所以$A \cap B = \left\{ x \mid -\frac{1}{2} \leq x \leq 2,x \in Z\right\}$,
 所以$A \cap B = \{ 0,1,2\}$.
8. 已知集合$ A = \{x|-2 \leq x \leq 7\} $,$ B = \{x|1 - m \leq x \leq 2m - 1\} $,且$ A \cup B = B $,则实数$ m $的取值范围是
$\{ m \mid m \geq 4\}$
.
答案: 8.$\{ m \mid m \geq 4\}$
 解析 $\because A \cup B = B,\therefore A \subseteq B,\therefore \begin{cases}1 - m \leq 2m - 1, \\ - 2 \geq 1 - m, \\ 7 \leq 2m - 1, \end{cases}$解得$m \geq 4$,即实数$m$的取值范围为$\{ m \mid m \geq 4\}$.
9. 已知集合$ A = \{x|x^2 - 16 = 0\} $,$ B = \{x|x^3 + 64 = 0\} $,求$ A \cap B $,$ A \cup B $.
答案: 9.解 因为$A = \{ x|x^{2} - 16 = 0\} = \{ - 4,4\},B = \{ x|x^{3} + 64 = 0\} = \{ - 4\}$,所以$A \cap B = \{ - 4\},A \cup B = \{ - 4,4\}$.

查看更多完整答案,请扫码查看

关闭