第71页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
22. (11分)如图,在平面直角坐标系中,$O$为坐标原点,$A(a,0)$,$B(0,b)$,且$a$,$b满足(a - 4)^{2}+\vert b - 4\vert = 0$.
(1)求点$A$、点$B$的坐标;
(2)动点$P从点O$出发,以每秒$1个单位长度的速度沿y$轴正半轴运动,运动时间为$t\mathrm{s}$,连接$AP$,过点$P作PM\perp AP$,且$PM = PA$,点$M$在第一象限,请用含有$t的式子表示点M$的坐标;
(3)在(2)的条件下,连接$MB$并延长,交$x轴于点Q$,连接$AM$,过点$B作PM的平行线BR$,交$x轴于点R$,当$S_{\triangle MQA}= 28$时,求点$R$的坐标.

(1)求点$A$、点$B$的坐标;
(2)动点$P从点O$出发,以每秒$1个单位长度的速度沿y$轴正半轴运动,运动时间为$t\mathrm{s}$,连接$AP$,过点$P作PM\perp AP$,且$PM = PA$,点$M$在第一象限,请用含有$t的式子表示点M$的坐标;
(3)在(2)的条件下,连接$MB$并延长,交$x轴于点Q$,连接$AM$,过点$B作PM的平行线BR$,交$x轴于点R$,当$S_{\triangle MQA}= 28$时,求点$R$的坐标.
答案:
(1) $\because$ a, b满足$(a - 4)^{2} + |b - 4| = 0$,$\therefore a - 4 = 0$, $b - 4 = 0$.$\therefore a = 4$, $b = 4$.$\therefore$ 点A的坐标为$(4, 0)$,点B的坐标为$(0, 4)$.
(2) 如图,过点M作$MC\perp y$轴于点C,则$\angle PCM = \angle AOP = 90^{\circ}$.$\because PM\perp AP$,$\therefore \angle APM = 90^{\circ}$.$\therefore \angle CPM + \angle APO = \angle OAP + \angle APO = 90^{\circ}$.$\therefore \angle CPM = \angle OAP$.在$\triangle CPM$和$\triangle OAP$中,$\left\{\begin{array}{l} \angle PCM = \angle AOP\\ \angle CPM = \angle OAP\\ PM = AP\end{array}\right.$$\therefore \triangle CPM \cong \triangle OAP(AAS)$.$\therefore CM = OP = t$, $CP = OA = 4$.$\therefore CO = CP + OP = 4 + t$.$\therefore$ 点M的坐标为$(t, 4 + t)$.
(3) 由
(1)
(2),得$CP = OA = OB = 4$.$\therefore CB = OP = t$.$\because CM = t$,$\therefore CB = CM$;$\therefore \triangle BCM$是等腰直角三角形.$\therefore \angle CBM = \angle OBQ = 45^{\circ}$.$\therefore \triangle BOQ$是等腰直角三角形.$\therefore OQ = OB = 4$.$\therefore$ 点Q的坐标为$(-4, 0)$.又$\because$ 点A的坐标为$(4, 0)$,$\therefore AQ = 8$.又$\because$ 点M的坐标为$(t, 4 + t)$,$S_{\triangle MQA} = 28$,$\therefore \frac{1}{2}×8×(4 + t) = 28$.解得$t = 3$.$\therefore OP = 3$.$\because BR// PM$,$\therefore \angle OBR = \angle CPM$.又$\because \angle CPM = \angle OAP$,$\therefore \angle OBR = \angle OAP$.在$\triangle OBR$和$\triangle OAP$中,$\left\{\begin{array}{l} \angle BOR = \angle AOP\\ OB = OA\\ \angle OBR = \angle OAP\end{array}\right.$$\therefore \triangle OBR \cong \triangle OAP(ASA)$.$\therefore OR = OP = 3$.$\therefore$ 点R的坐标为$(-3, 0)$.
(1) $\because$ a, b满足$(a - 4)^{2} + |b - 4| = 0$,$\therefore a - 4 = 0$, $b - 4 = 0$.$\therefore a = 4$, $b = 4$.$\therefore$ 点A的坐标为$(4, 0)$,点B的坐标为$(0, 4)$.
(2) 如图,过点M作$MC\perp y$轴于点C,则$\angle PCM = \angle AOP = 90^{\circ}$.$\because PM\perp AP$,$\therefore \angle APM = 90^{\circ}$.$\therefore \angle CPM + \angle APO = \angle OAP + \angle APO = 90^{\circ}$.$\therefore \angle CPM = \angle OAP$.在$\triangle CPM$和$\triangle OAP$中,$\left\{\begin{array}{l} \angle PCM = \angle AOP\\ \angle CPM = \angle OAP\\ PM = AP\end{array}\right.$$\therefore \triangle CPM \cong \triangle OAP(AAS)$.$\therefore CM = OP = t$, $CP = OA = 4$.$\therefore CO = CP + OP = 4 + t$.$\therefore$ 点M的坐标为$(t, 4 + t)$.
(3) 由
(1)
(2),得$CP = OA = OB = 4$.$\therefore CB = OP = t$.$\because CM = t$,$\therefore CB = CM$;$\therefore \triangle BCM$是等腰直角三角形.$\therefore \angle CBM = \angle OBQ = 45^{\circ}$.$\therefore \triangle BOQ$是等腰直角三角形.$\therefore OQ = OB = 4$.$\therefore$ 点Q的坐标为$(-4, 0)$.又$\because$ 点A的坐标为$(4, 0)$,$\therefore AQ = 8$.又$\because$ 点M的坐标为$(t, 4 + t)$,$S_{\triangle MQA} = 28$,$\therefore \frac{1}{2}×8×(4 + t) = 28$.解得$t = 3$.$\therefore OP = 3$.$\because BR// PM$,$\therefore \angle OBR = \angle CPM$.又$\because \angle CPM = \angle OAP$,$\therefore \angle OBR = \angle OAP$.在$\triangle OBR$和$\triangle OAP$中,$\left\{\begin{array}{l} \angle BOR = \angle AOP\\ OB = OA\\ \angle OBR = \angle OAP\end{array}\right.$$\therefore \triangle OBR \cong \triangle OAP(ASA)$.$\therefore OR = OP = 3$.$\therefore$ 点R的坐标为$(-3, 0)$.
查看更多完整答案,请扫码查看