第69页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
19. (9分)如图,在$Rt\triangle ABC$中,$\angle B = 90^{\circ}$,$AD是\angle BAC$的平分线,$DE\perp AC于点E$,点$F在AB$上,$DC = DF$.
(1)求证:$BF = CE$;
(2)若$AC = 10$,$AF = 2$,求$CE$的长.

(1)求证:$BF = CE$;
(2)若$AC = 10$,$AF = 2$,求$CE$的长.
答案:
(1) $\because$ AD是$\angle BAC$的平分线,$\angle B = 90^{\circ}$, $DE\perp AC$,$\therefore DB = DE$, $\angle B = \angle DEC = \angle DEA = 90^{\circ}$.在$Rt\triangle BDF$和$Rt\triangle EDC$中,$\left\{\begin{array}{l} DF = DC\\ DB = DE\end{array}\right.$$\therefore Rt\triangle BDF \cong Rt\triangle EDC(HL)$.$\therefore BF = CE$.
(2) 在$Rt\triangle ABD$和$Rt\triangle AED$中,$\left\{\begin{array}{l} AD = AD\\ DB = DE\end{array}\right.$$\therefore Rt\triangle ABD \cong Rt\triangle AED(HL)$.$\therefore AB = AE$.$\because AC = 10$, $AF = 2$,$\therefore AB = BF + 2$, $AE = 10 - CE$;$\therefore BF + 2 = 10 - CE$.$\therefore CE + 2 = 10 - CE$.$\therefore CE = 4$.
(1) $\because$ AD是$\angle BAC$的平分线,$\angle B = 90^{\circ}$, $DE\perp AC$,$\therefore DB = DE$, $\angle B = \angle DEC = \angle DEA = 90^{\circ}$.在$Rt\triangle BDF$和$Rt\triangle EDC$中,$\left\{\begin{array}{l} DF = DC\\ DB = DE\end{array}\right.$$\therefore Rt\triangle BDF \cong Rt\triangle EDC(HL)$.$\therefore BF = CE$.
(2) 在$Rt\triangle ABD$和$Rt\triangle AED$中,$\left\{\begin{array}{l} AD = AD\\ DB = DE\end{array}\right.$$\therefore Rt\triangle ABD \cong Rt\triangle AED(HL)$.$\therefore AB = AE$.$\because AC = 10$, $AF = 2$,$\therefore AB = BF + 2$, $AE = 10 - CE$;$\therefore BF + 2 = 10 - CE$.$\therefore CE + 2 = 10 - CE$.$\therefore CE = 4$.
20. (9分)数学活动课上,在学习了角平分线的尺规作图后,嘉嘉受此问题启发,利用轴对称性又发现了一种作角平分线的方法.如图,请仔细阅读并完成相应任务.
【作法】
①以点$O$为圆心,适当长为半径作弧,交$OA于点C$,交$OB于点D$;
②再以点$O$为圆心,大于$OC$长为半径作弧,交$OA于点E$,交$OB于点F$;
③连接$CF$,$DE交于点P$;
④作射线$OP$.
则射线$OP即为\angle AOB$的平分线.
【任务】
(1)由尺规作图可直接得到的相等线段有$OC = OD$和
(2)由(1)中的条件,可证$\triangle OCF\cong\triangle ODE$,依据是
(3)如果把(2)中的$\triangle OCF\cong\triangle ODE$作为条件,求证:$OP平分\angle AOB$.
【作法】
①以点$O$为圆心,适当长为半径作弧,交$OA于点C$,交$OB于点D$;
②再以点$O$为圆心,大于$OC$长为半径作弧,交$OA于点E$,交$OB于点F$;
③连接$CF$,$DE交于点P$;
④作射线$OP$.
则射线$OP即为\angle AOB$的平分线.
【任务】
(1)由尺规作图可直接得到的相等线段有$OC = OD$和
$OE = OF$
.(2)由(1)中的条件,可证$\triangle OCF\cong\triangle ODE$,依据是
$SAS$
(填判定方法).(3)如果把(2)中的$\triangle OCF\cong\triangle ODE$作为条件,求证:$OP平分\angle AOB$.
$\because \triangle OCF \cong \triangle ODE$,$\therefore \angle OFC = \angle OED$.$\because OC = OD$, $OE = OF$,$\therefore OE - OC = OF - OD$,即$CE = DF$.在$\triangle PCE$和$\triangle PDF$中,$\left\{\begin{array}{l} \angle PEC = \angle PFD\\ \angle CPE = \angle DPF\\ CE = DF\end{array}\right.$$\therefore \triangle PCE \cong \triangle PDF(AAS)$.$\therefore PE = PF$.在$\triangle POE$和$\triangle POF$中,$\left\{\begin{array}{l} PE = PF\\ OE = OF\\ OP = OP\end{array}\right.$$\therefore \triangle POE \cong \triangle POF(SSS)$.$\therefore \angle POE = \angle POF$,即OP平分$\angle AOB$.
答案:
(1) $OE = OF$
(2) $SAS$
(3) $\because \triangle OCF \cong \triangle ODE$,$\therefore \angle OFC = \angle OED$.$\because OC = OD$, $OE = OF$,$\therefore OE - OC = OF - OD$,即$CE = DF$.在$\triangle PCE$和$\triangle PDF$中,$\left\{\begin{array}{l} \angle PEC = \angle PFD\\ \angle CPE = \angle DPF\\ CE = DF\end{array}\right.$$\therefore \triangle PCE \cong \triangle PDF(AAS)$.$\therefore PE = PF$.在$\triangle POE$和$\triangle POF$中,$\left\{\begin{array}{l} PE = PF\\ OE = OF\\ OP = OP\end{array}\right.$$\therefore \triangle POE \cong \triangle POF(SSS)$.$\therefore \angle POE = \angle POF$,即OP平分$\angle AOB$.
(1) $OE = OF$
(2) $SAS$
(3) $\because \triangle OCF \cong \triangle ODE$,$\therefore \angle OFC = \angle OED$.$\because OC = OD$, $OE = OF$,$\therefore OE - OC = OF - OD$,即$CE = DF$.在$\triangle PCE$和$\triangle PDF$中,$\left\{\begin{array}{l} \angle PEC = \angle PFD\\ \angle CPE = \angle DPF\\ CE = DF\end{array}\right.$$\therefore \triangle PCE \cong \triangle PDF(AAS)$.$\therefore PE = PF$.在$\triangle POE$和$\triangle POF$中,$\left\{\begin{array}{l} PE = PF\\ OE = OF\\ OP = OP\end{array}\right.$$\therefore \triangle POE \cong \triangle POF(SSS)$.$\therefore \angle POE = \angle POF$,即OP平分$\angle AOB$.
查看更多完整答案,请扫码查看