第88页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
6. 如图,在△ABC中,AB= AC,D是边BC的中点,DE⊥AC,垂足为点E.
(1)求证:DE·CD= AD·CE;
(2)设F为DE的中点,连接AF,BE,求证:AF·BC= AD·BE.

(1)求证:DE·CD= AD·CE;
(2)设F为DE的中点,连接AF,BE,求证:AF·BC= AD·BE.
答案:
证明:
(1)$\because AB=AC$,$D$是边$BC$的中点,
$\therefore AD\perp BC$,即$\angle ADC=90^{\circ}$.
$\therefore \angle ADE+\angle CDE=90^{\circ}$.
$\because DE\perp AC$,
$\therefore \angle CED=\angle AED=90^{\circ}$.
$\therefore \angle CDE+\angle DCE=90^{\circ}$.
$\therefore \angle ADE=\angle DCE$.
$\therefore \triangle AED\backsim \triangle DEC$.$\therefore \frac{DE}{CE}=\frac{AD}{CD}$.
$\therefore DE\cdot CD=AD\cdot CE$.
(2)$\because D$是边$BC$的中点,
$\therefore BD=CD=\frac{1}{2}BC$.
$\because F$为$DE$的中点,$\therefore DE=2DF$.
$\because DE\cdot CD=AD\cdot CE$,
$\therefore \frac{CE}{DF}=\frac{BC}{AD}$.
又$\because \angle BCE=\angle ADF$,
$\therefore \triangle BCE\backsim \triangle ADF$.
$\therefore \frac{BC}{AD}=\frac{BE}{AF}$.
$\therefore AF\cdot BC=AD\cdot BE$.
(1)$\because AB=AC$,$D$是边$BC$的中点,
$\therefore AD\perp BC$,即$\angle ADC=90^{\circ}$.
$\therefore \angle ADE+\angle CDE=90^{\circ}$.
$\because DE\perp AC$,
$\therefore \angle CED=\angle AED=90^{\circ}$.
$\therefore \angle CDE+\angle DCE=90^{\circ}$.
$\therefore \angle ADE=\angle DCE$.
$\therefore \triangle AED\backsim \triangle DEC$.$\therefore \frac{DE}{CE}=\frac{AD}{CD}$.
$\therefore DE\cdot CD=AD\cdot CE$.
(2)$\because D$是边$BC$的中点,
$\therefore BD=CD=\frac{1}{2}BC$.
$\because F$为$DE$的中点,$\therefore DE=2DF$.
$\because DE\cdot CD=AD\cdot CE$,
$\therefore \frac{CE}{DF}=\frac{BC}{AD}$.
又$\because \angle BCE=\angle ADF$,
$\therefore \triangle BCE\backsim \triangle ADF$.
$\therefore \frac{BC}{AD}=\frac{BE}{AF}$.
$\therefore AF\cdot BC=AD\cdot BE$.
7. 如图,在四边形ABCD中,BD平分∠ABC,∠ADB= ∠DCB= 90°,E为AB的中点,CE与BD交于点F.
(1)求证:△ABD∽△DBC;
(2)求证:DE//BC;
(3)若DF:BF= 2:3,CD= 6,求DE的长.

(1)求证:△ABD∽△DBC;
(2)求证:DE//BC;
(3)若DF:BF= 2:3,CD= 6,求DE的长.
答案:
(1)证明:$\because BD$平分$\angle ABC$,
$\therefore \angle ABD=\angle CBD$.
$\because \angle ADB=\angle DCB=90^{\circ}$,
$\therefore \triangle ABD\backsim \triangle DBC$.
(2)证明:$\because \angle ADB=90^{\circ}$,$E$为$AB$的中点,
$\therefore DE=EB=AE$.
$\therefore \angle ABD=\angle BDE$.
$\because \angle ABD=\angle CBD$,
$\therefore \angle BDE=\angle CBD$.
$\therefore DE// BC$.
(3)解:$\because DE// BC$,
$\therefore \angle DEF=\angle BCF$,$\angle EDF=\angle CBF$.
$\therefore \triangle DEF\backsim \triangle BCF$.
$\therefore \frac{DE}{BC}=\frac{DF}{BF}=\frac{2}{3}$.
设$DE=2k$,$\therefore BC=3k$.
$\because E$为$AB$的中点,$\angle ADB=90^{\circ}$,
$\therefore AB=2DE=4k$.
$\because \triangle ABD\backsim \triangle DBC$,$\therefore \frac{AB}{DB}=\frac{DB}{BC}$.
$\therefore DB^{2}=AB\cdot BC=4k× 3k=12k^{2}$.
$\because \angle BCD=90^{\circ}$,$CD=6$,
$\therefore BC^{2}+CD^{2}=BD^{2}$.
$\therefore (3k)^{2}+6^{2}=12k^{2}$,
解得$k=2\sqrt{3}$(负值舍去).
$\therefore DE=4\sqrt{3}$.
(1)证明:$\because BD$平分$\angle ABC$,
$\therefore \angle ABD=\angle CBD$.
$\because \angle ADB=\angle DCB=90^{\circ}$,
$\therefore \triangle ABD\backsim \triangle DBC$.
(2)证明:$\because \angle ADB=90^{\circ}$,$E$为$AB$的中点,
$\therefore DE=EB=AE$.
$\therefore \angle ABD=\angle BDE$.
$\because \angle ABD=\angle CBD$,
$\therefore \angle BDE=\angle CBD$.
$\therefore DE// BC$.
(3)解:$\because DE// BC$,
$\therefore \angle DEF=\angle BCF$,$\angle EDF=\angle CBF$.
$\therefore \triangle DEF\backsim \triangle BCF$.
$\therefore \frac{DE}{BC}=\frac{DF}{BF}=\frac{2}{3}$.
设$DE=2k$,$\therefore BC=3k$.
$\because E$为$AB$的中点,$\angle ADB=90^{\circ}$,
$\therefore AB=2DE=4k$.
$\because \triangle ABD\backsim \triangle DBC$,$\therefore \frac{AB}{DB}=\frac{DB}{BC}$.
$\therefore DB^{2}=AB\cdot BC=4k× 3k=12k^{2}$.
$\because \angle BCD=90^{\circ}$,$CD=6$,
$\therefore BC^{2}+CD^{2}=BD^{2}$.
$\therefore (3k)^{2}+6^{2}=12k^{2}$,
解得$k=2\sqrt{3}$(负值舍去).
$\therefore DE=4\sqrt{3}$.
8. 如图,在△ABC中,点D,E分别在边AB,AC上,∠AED= ∠B,AG分别交线段DE,BC于点F,G,且AD:AC= DF:CG.求证:
(1)AG平分∠BAC;
(2)EF·CG= DF·BG.

(1)AG平分∠BAC;
(2)EF·CG= DF·BG.
答案:
证明:
(1)$\because \angle DAE+\angle AED+\angle ADE=180^{\circ}$,
$\angle BAC+\angle B+\angle C=180^{\circ}$,$\angle AED=\angle B$,
$\therefore \angle ADE=\angle C$.
又$\because AD:AC=DF:CG$,$\therefore \triangle ADF\backsim \triangle ACG$.
$\therefore \angle DAF=\angle CAG$.$\therefore AG$平分$\angle BAC$.
(2)$\because \angle AEF=\angle B$,
$\angle EAF=\angle BAG$,
$\therefore \triangle AEF\backsim \triangle ABG$.$\therefore \frac{EF}{BG}=\frac{AF}{AG}$.
$\because \triangle ADF\backsim \triangle ACG$,$\therefore \frac{DF}{CG}=\frac{AF}{AG}$.
$\therefore \frac{EF}{BG}=\frac{DF}{CG}$.$\therefore EF\cdot CG=DF\cdot BG$.
(1)$\because \angle DAE+\angle AED+\angle ADE=180^{\circ}$,
$\angle BAC+\angle B+\angle C=180^{\circ}$,$\angle AED=\angle B$,
$\therefore \angle ADE=\angle C$.
又$\because AD:AC=DF:CG$,$\therefore \triangle ADF\backsim \triangle ACG$.
$\therefore \angle DAF=\angle CAG$.$\therefore AG$平分$\angle BAC$.
(2)$\because \angle AEF=\angle B$,
$\angle EAF=\angle BAG$,
$\therefore \triangle AEF\backsim \triangle ABG$.$\therefore \frac{EF}{BG}=\frac{AF}{AG}$.
$\because \triangle ADF\backsim \triangle ACG$,$\therefore \frac{DF}{CG}=\frac{AF}{AG}$.
$\therefore \frac{EF}{BG}=\frac{DF}{CG}$.$\therefore EF\cdot CG=DF\cdot BG$.
9. 如图,在△ABC中,AB= 8 cm,BC= 16 cm,点P从点A开始沿边AB向点B以2 cm/s的速度移动,点Q从点B开始沿边BC向点C以4 cm/s的速度移动.如果点P,Q分别从点A,B同时出发,几秒后,△PBQ与△ABC相似?

答案:
解:设$x\ s$后,$\triangle PBQ$与$\triangle ABC$相似,
则$AP=2x\ cm$,$BQ=4x\ cm$.
$\because AB=8\ cm$,
$\therefore BP=AB-AP=(8-2x)\ cm$.
$\because \angle B$是公共角,
$\therefore$分$\triangle PBQ\backsim \triangle ABC$和$\triangle PBQ\backsim \triangle CBA$两种情况.
①当$\triangle PBQ\backsim \triangle ABC$时,
$\frac{BP}{BA}=\frac{BQ}{BC}$,即$\frac{8-2x}{8}=\frac{4x}{16}$,解得$x=2$;
②当$\triangle PBQ\backsim \triangle CBA$时,$\frac{BP}{BC}=\frac{BQ}{BA}$,即$\frac{8-2x}{16}=\frac{4x}{8}$,
解得$x=0.8$.
$\therefore 2\ s$或$0.8\ s$后,$\triangle PBQ$与$\triangle ABC$相似.
则$AP=2x\ cm$,$BQ=4x\ cm$.
$\because AB=8\ cm$,
$\therefore BP=AB-AP=(8-2x)\ cm$.
$\because \angle B$是公共角,
$\therefore$分$\triangle PBQ\backsim \triangle ABC$和$\triangle PBQ\backsim \triangle CBA$两种情况.
①当$\triangle PBQ\backsim \triangle ABC$时,
$\frac{BP}{BA}=\frac{BQ}{BC}$,即$\frac{8-2x}{8}=\frac{4x}{16}$,解得$x=2$;
②当$\triangle PBQ\backsim \triangle CBA$时,$\frac{BP}{BC}=\frac{BQ}{BA}$,即$\frac{8-2x}{16}=\frac{4x}{8}$,
解得$x=0.8$.
$\therefore 2\ s$或$0.8\ s$后,$\triangle PBQ$与$\triangle ABC$相似.
查看更多完整答案,请扫码查看