2025年玩转全课程八年级数学全一册浙教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年玩转全课程八年级数学全一册浙教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第66页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
(1) 思路梳理.
$\because AB= CD$,$\therefore把\triangle ABE$绕点A逆时针旋转$90^{\circ }至\triangle ADG$,可使AB与AD重合.
$\because \angle ADC= \angle B= 90^{\circ }$,$\therefore \angle FDG= 180^{\circ }$,点F,D,G共线.其依据是
(2) 类比引申.
如图2,四边形ABCD中,$AB= AD$,$\angle BAD= 90^{\circ }$.点E,F分别在边BC,CD上,$\angle EAF= 45^{\circ }$.若$\angle B$,$\angle D$都不是直角,则当$\angle B与\angle D$满足等量关系
(3) 联想拓展.
如图3,在$\triangle ABC$中,$\angle BAC= 90^{\circ }$,$AB= AC$,点D,E均在边BC上,且$\angle DAE= 45^{\circ }$.猜想BD,DE,EC应满足的等量关系,并写出推理过程.
猜想:$DE^{2} = BD^{2} + EC^{2}$
证明:将$\triangle AEC$绕点$A$顺时针旋转$90^{\circ}$得到$\triangle ABF$,连接$FD$
$\because \triangle AEC \cong \triangle ABF$
$\therefore BF = EC$,$AF = AE$,$\angle ABF = \angle C$,$\angle BAF = \angle CAE$
$\because \angle BAC = 90^{\circ}$,$\angle DAE = 45^{\circ}$
$\therefore \angle BAD + \angle CAE = 45^{\circ}$
$\therefore \angle BAD + \angle BAF = 45^{\circ}$,即$\angle FAD = 45^{\circ} = \angle DAE$
在$\triangle AFD$和$\triangle AED$中
$\left\{\begin{array}{l}AF = AE\\\angle FAD = \angle EAD\\AD = AD\end{array}\right.$
$\therefore \triangle AFD \cong \triangle AED(SAS)$
$\therefore FD = DE$
$\because AB = AC$,$\angle BAC = 90^{\circ}$
$\therefore \angle ABC = \angle C = 45^{\circ}$
$\therefore \angle ABF = 45^{\circ}$
$\therefore \angle FBD = \angle ABC + \angle ABF = 90^{\circ}$
在$Rt\triangle FBD$中,$FD^{2} = BD^{2} + BF^{2}$
$\therefore DE^{2} = BD^{2} + EC^{2}$
$\because AB= CD$,$\therefore把\triangle ABE$绕点A逆时针旋转$90^{\circ }至\triangle ADG$,可使AB与AD重合.
$\because \angle ADC= \angle B= 90^{\circ }$,$\therefore \angle FDG= 180^{\circ }$,点F,D,G共线.其依据是
平角的定义
,易证$\triangle AFG\cong$$\triangle AFE$
,得$EF= BE+DF$.(2) 类比引申.
如图2,四边形ABCD中,$AB= AD$,$\angle BAD= 90^{\circ }$.点E,F分别在边BC,CD上,$\angle EAF= 45^{\circ }$.若$\angle B$,$\angle D$都不是直角,则当$\angle B与\angle D$满足等量关系
$\angle B + \angle D = 180^{\circ}$
时,仍有$EF= BE+DF$.(3) 联想拓展.
如图3,在$\triangle ABC$中,$\angle BAC= 90^{\circ }$,$AB= AC$,点D,E均在边BC上,且$\angle DAE= 45^{\circ }$.猜想BD,DE,EC应满足的等量关系,并写出推理过程.
猜想:$DE^{2} = BD^{2} + EC^{2}$
证明:将$\triangle AEC$绕点$A$顺时针旋转$90^{\circ}$得到$\triangle ABF$,连接$FD$
$\because \triangle AEC \cong \triangle ABF$
$\therefore BF = EC$,$AF = AE$,$\angle ABF = \angle C$,$\angle BAF = \angle CAE$
$\because \angle BAC = 90^{\circ}$,$\angle DAE = 45^{\circ}$
$\therefore \angle BAD + \angle CAE = 45^{\circ}$
$\therefore \angle BAD + \angle BAF = 45^{\circ}$,即$\angle FAD = 45^{\circ} = \angle DAE$
在$\triangle AFD$和$\triangle AED$中
$\left\{\begin{array}{l}AF = AE\\\angle FAD = \angle EAD\\AD = AD\end{array}\right.$
$\therefore \triangle AFD \cong \triangle AED(SAS)$
$\therefore FD = DE$
$\because AB = AC$,$\angle BAC = 90^{\circ}$
$\therefore \angle ABC = \angle C = 45^{\circ}$
$\therefore \angle ABF = 45^{\circ}$
$\therefore \angle FBD = \angle ABC + \angle ABF = 90^{\circ}$
在$Rt\triangle FBD$中,$FD^{2} = BD^{2} + BF^{2}$
$\therefore DE^{2} = BD^{2} + EC^{2}$
答案:
(1) 平角的定义;$\triangle AFE$
(2) $\angle B + \angle D = 180^{\circ}$
(3) 猜想:$DE^{2} = BD^{2} + EC^{2}$
证明:将$\triangle AEC$绕点$A$顺时针旋转$90^{\circ}$得到$\triangle ABF$,连接$FD$
$\because \triangle AEC \cong \triangle ABF$
$\therefore BF = EC$,$AF = AE$,$\angle ABF = \angle C$,$\angle BAF = \angle CAE$
$\because \angle BAC = 90^{\circ}$,$\angle DAE = 45^{\circ}$
$\therefore \angle BAD + \angle CAE = 45^{\circ}$
$\therefore \angle BAD + \angle BAF = 45^{\circ}$,即$\angle FAD = 45^{\circ} = \angle DAE$
在$\triangle AFD$和$\triangle AED$中
$\left\{\begin{array}{l}AF = AE\\\angle FAD = \angle EAD\\AD = AD\end{array}\right.$
$\therefore \triangle AFD \cong \triangle AED(SAS)$
$\therefore FD = DE$
$\because AB = AC$,$\angle BAC = 90^{\circ}$
$\therefore \angle ABC = \angle C = 45^{\circ}$
$\therefore \angle ABF = 45^{\circ}$
$\therefore \angle FBD = \angle ABC + \angle ABF = 90^{\circ}$
在$Rt\triangle FBD$中,$FD^{2} = BD^{2} + BF^{2}$
$\therefore DE^{2} = BD^{2} + EC^{2}$
(1) 平角的定义;$\triangle AFE$
(2) $\angle B + \angle D = 180^{\circ}$
(3) 猜想:$DE^{2} = BD^{2} + EC^{2}$
证明:将$\triangle AEC$绕点$A$顺时针旋转$90^{\circ}$得到$\triangle ABF$,连接$FD$
$\because \triangle AEC \cong \triangle ABF$
$\therefore BF = EC$,$AF = AE$,$\angle ABF = \angle C$,$\angle BAF = \angle CAE$
$\because \angle BAC = 90^{\circ}$,$\angle DAE = 45^{\circ}$
$\therefore \angle BAD + \angle CAE = 45^{\circ}$
$\therefore \angle BAD + \angle BAF = 45^{\circ}$,即$\angle FAD = 45^{\circ} = \angle DAE$
在$\triangle AFD$和$\triangle AED$中
$\left\{\begin{array}{l}AF = AE\\\angle FAD = \angle EAD\\AD = AD\end{array}\right.$
$\therefore \triangle AFD \cong \triangle AED(SAS)$
$\therefore FD = DE$
$\because AB = AC$,$\angle BAC = 90^{\circ}$
$\therefore \angle ABC = \angle C = 45^{\circ}$
$\therefore \angle ABF = 45^{\circ}$
$\therefore \angle FBD = \angle ABC + \angle ABF = 90^{\circ}$
在$Rt\triangle FBD$中,$FD^{2} = BD^{2} + BF^{2}$
$\therefore DE^{2} = BD^{2} + EC^{2}$
查看更多完整答案,请扫码查看