2025年新编高中同步作业高中数学选择性必修第一册人教版A


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年新编高中同步作业高中数学选择性必修第一册人教版A 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



答案: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} = 1(a > b > 0)$ $\frac{y^{2}}{a^{2}}+\frac{x^{2}}{b^{2}} = 1(a > b > 0)$
$-a\leqslant x\leqslant a,-b\leqslant y\leqslant b$ $-b\leqslant x\leqslant b,-a\leqslant y\leqslant a$
$(\pm a,0),(0,\pm b)$ $(\pm b,0),(0,\pm a)$ $2b$ $2a$
$(\pm c,0)$ $(0,\pm c)$ $2c = 2\sqrt{a^{2}-b^{2}}$ 坐标轴
坐标原点 $e=\frac{c}{a},0 < e < 1$
[微训练]
1. 椭圆25x² + 9y² = 225的长轴长、短轴长、离心率依次是( )
A. 5,3,$\frac{4}{5}$
B. 10,6,$\frac{4}{5}$
C. 5,3,$\frac{3}{5}$
D. 10,6,$\frac{3}{5}$
答案: B
2. 已知椭圆的中心在原点,焦点在x轴上,且长轴长为12,离心率为$\frac{1}{3}$,则此椭圆的标准方程为____________.
答案: $\frac{x^{2}}{36}+\frac{y^{2}}{32}=1$
任务一 根据椭圆的方程研究其几何性质
1.(多选)已知椭圆C:16x² + 4y² = 1,则下列结论正确的是( )
A. 长轴长为$\frac{1}{2}$
B. 焦距为$\frac{\sqrt{3}}{4}$
C. 焦点坐标为(0,±$\frac{\sqrt{3}}{4}$)
D. 离心率为$\frac{\sqrt{3}}{2}$
答案: 1. CD 解析:将椭圆方程$16x^{2}+4y^{2}=1$化为标准方程为$\frac{y^{2}}{\frac{1}{4}}+\frac{x^{2}}{\frac{1}{16}} = 1$,可得$a=\frac{1}{2},b=\frac{1}{4},c = \frac{\sqrt{3}}{4}$,所以长轴长为$2a = 1$,焦距$2c=\frac{\sqrt{3}}{2}$,焦点坐标为$(0,\pm\frac{\sqrt{3}}{4})$,短轴长为$2b=\frac{1}{2}$,离心率$e=\frac{c}{a}=\frac{\sqrt{3}}{2}$. 故选CD.

查看更多完整答案,请扫码查看

关闭