2025年小题狂做高中数学必修第二册人教版巅峰版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年小题狂做高中数学必修第二册人教版巅峰版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第29页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
22. [2023 新高考Ⅰ卷,17]已知在△ABC 中,$A + B = 3C$,$2\sin(A - C) = \sin B$.
(1) 求$\sin A$;
(2) 若$AB = 5$,求边$AB$上的高.
(1) 求$\sin A$;
(2) 若$AB = 5$,求边$AB$上的高.
答案:
22.
(1) 因为$A + B = 3C$,且$A + B + C = \pi$,所以$4C = \pi$,即$C = \frac{\pi}{4}$。因为$2\sin(A - C) = \sin B$,所以$2\sin(A - \frac{\pi}{4}) = \sin(\frac{3\pi}{4}-A) = \sin(\pi-\frac{3\pi}{4} + A) = \sin(\frac{\pi}{4} + A)$。展开得$2(\sin A\cos\frac{\pi}{4}-\cos A\sin\frac{\pi}{4}) = \sin A\cos\frac{\pi}{4} + \cos A\sin\frac{\pi}{4}$,即$\sqrt{2}\sin A-\sqrt{2}\cos A = \frac{\sqrt{2}}{2}\sin A + \frac{\sqrt{2}}{2}\cos A$,整理得$\frac{\sqrt{2}}{2}\sin A = \frac{3\sqrt{2}}{2}\cos A$,所以$\tan A = 3$。因为$A\in(0,\pi)$,所以$\sin A = \frac{3}{\sqrt{10}} = \frac{3\sqrt{10}}{10}$。
(2) 由
(1)知$\sin A = \frac{3\sqrt{10}}{10}$,$\cos A = \frac{\sqrt{10}}{10}$,$C = \frac{\pi}{4}$,所以$B = \pi-A-C = \pi-\arcsin\frac{3\sqrt{10}}{10}-\frac{\pi}{4}$。由正弦定理$\frac{BC}{\sin A} = \frac{AB}{\sin C}$,得$BC = \frac{AB\sin A}{\sin C} = \frac{5×\frac{3\sqrt{10}}{10}}{\frac{\sqrt{2}}{2}} = 3\sqrt{5}$。设边$AB$上的高为$h$,则$S_{\triangle ABC} = \frac{1}{2}AB· h = \frac{1}{2}BC· AC·\sin C$。又由正弦定理$\frac{AC}{\sin B} = \frac{AB}{\sin C}$,且$\sin B = \sin(A + C) = \sin A\cos C + \cos A\sin C = \frac{3\sqrt{10}}{10}×\frac{\sqrt{2}}{2} + \frac{\sqrt{10}}{10}×\frac{\sqrt{2}}{2} = \frac{4\sqrt{20}}{20} = \frac{2\sqrt{5}}{5}$,所以$AC = \frac{AB\sin B}{\sin C} = \frac{5×\frac{2\sqrt{5}}{5}}{\frac{\sqrt{2}}{2}} = 2\sqrt{10}$。所以$\frac{1}{2}×5× h = \frac{1}{2}×3\sqrt{5}×2\sqrt{10}×\frac{\sqrt{2}}{2}$,即$5h = 3\sqrt{5}×2\sqrt{10}×\frac{\sqrt{2}}{2} = 3\sqrt{5}×\sqrt{20} = 3\sqrt{5}×2\sqrt{5} = 30$,所以$h = 6$。故边$AB$上的高为$6$。
(1) 因为$A + B = 3C$,且$A + B + C = \pi$,所以$4C = \pi$,即$C = \frac{\pi}{4}$。因为$2\sin(A - C) = \sin B$,所以$2\sin(A - \frac{\pi}{4}) = \sin(\frac{3\pi}{4}-A) = \sin(\pi-\frac{3\pi}{4} + A) = \sin(\frac{\pi}{4} + A)$。展开得$2(\sin A\cos\frac{\pi}{4}-\cos A\sin\frac{\pi}{4}) = \sin A\cos\frac{\pi}{4} + \cos A\sin\frac{\pi}{4}$,即$\sqrt{2}\sin A-\sqrt{2}\cos A = \frac{\sqrt{2}}{2}\sin A + \frac{\sqrt{2}}{2}\cos A$,整理得$\frac{\sqrt{2}}{2}\sin A = \frac{3\sqrt{2}}{2}\cos A$,所以$\tan A = 3$。因为$A\in(0,\pi)$,所以$\sin A = \frac{3}{\sqrt{10}} = \frac{3\sqrt{10}}{10}$。
(2) 由
(1)知$\sin A = \frac{3\sqrt{10}}{10}$,$\cos A = \frac{\sqrt{10}}{10}$,$C = \frac{\pi}{4}$,所以$B = \pi-A-C = \pi-\arcsin\frac{3\sqrt{10}}{10}-\frac{\pi}{4}$。由正弦定理$\frac{BC}{\sin A} = \frac{AB}{\sin C}$,得$BC = \frac{AB\sin A}{\sin C} = \frac{5×\frac{3\sqrt{10}}{10}}{\frac{\sqrt{2}}{2}} = 3\sqrt{5}$。设边$AB$上的高为$h$,则$S_{\triangle ABC} = \frac{1}{2}AB· h = \frac{1}{2}BC· AC·\sin C$。又由正弦定理$\frac{AC}{\sin B} = \frac{AB}{\sin C}$,且$\sin B = \sin(A + C) = \sin A\cos C + \cos A\sin C = \frac{3\sqrt{10}}{10}×\frac{\sqrt{2}}{2} + \frac{\sqrt{10}}{10}×\frac{\sqrt{2}}{2} = \frac{4\sqrt{20}}{20} = \frac{2\sqrt{5}}{5}$,所以$AC = \frac{AB\sin B}{\sin C} = \frac{5×\frac{2\sqrt{5}}{5}}{\frac{\sqrt{2}}{2}} = 2\sqrt{10}$。所以$\frac{1}{2}×5× h = \frac{1}{2}×3\sqrt{5}×2\sqrt{10}×\frac{\sqrt{2}}{2}$,即$5h = 3\sqrt{5}×2\sqrt{10}×\frac{\sqrt{2}}{2} = 3\sqrt{5}×\sqrt{20} = 3\sqrt{5}×2\sqrt{5} = 30$,所以$h = 6$。故边$AB$上的高为$6$。
23. [2025 北京卷,16]在△ABC 中,$\cos A = -\frac{1}{3}$,$a\sin C = 4\sqrt{2}$.
(1) 求$c$.
(2) 在以下三个条件中选择一个作为已知,使得△ABC 存在,求边$BC$上的高.
①$a = 6$;②$b\sin C = \frac{10\sqrt{2}}{3}$;③△ABC 的面积为$10\sqrt{2}$.
(1) 求$c$.
(2) 在以下三个条件中选择一个作为已知,使得△ABC 存在,求边$BC$上的高.
①$a = 6$;②$b\sin C = \frac{10\sqrt{2}}{3}$;③△ABC 的面积为$10\sqrt{2}$.
答案:
23.
(1) 由正弦定理$\frac{a}{\sin A} = \frac{c}{\sin C}$,得$a\sin C = c\sin A$。已知$a\sin C = 4\sqrt{2}$,所以$c\sin A = 4\sqrt{2}$。因为$\cos A = -\frac{1}{3}$,所以$A$为钝角,$\sin A = \sqrt{1-\cos^2 A} = \sqrt{1-\frac{1}{9}} = \frac{2\sqrt{2}}{3}$。代入得$c×\frac{2\sqrt{2}}{3} = 4\sqrt{2}$,解得$c = 6$。
(2) 由
(1)知$c = 6$,$\sin A = \frac{2\sqrt{2}}{3}$,$\cos A = -\frac{1}{3}$。
选择条件①:$a = 6$。由正弦定理$\frac{a}{\sin A} = \frac{c}{\sin C}$,得$\frac{6}{\frac{2\sqrt{2}}{3}} = \frac{6}{\sin C}$,所以$\sin C = \frac{2\sqrt{2}}{3}$。因为$c = 6$,$a = 6$,所以$a = c$,则$A = C$,又$\cos A = -\frac{1}{3}$,所以$C$为钝角,$\cos C = -\frac{1}{3}$。所以$B = \pi-A-C = \pi-2A$,$\sin B = \sin(\pi-2A) = \sin2A = 2\sin A\cos A = 2×\frac{2\sqrt{2}}{3}×(-\frac{1}{3}) = -\frac{4\sqrt{2}}{9}$(舍去,因为$\sin B > 0$)或利用$\cos2A = 2\cos^2 A-1 = 2×\frac{1}{9}-1 = -\frac{7}{9}$,$\sin B = \sin(\pi-2A) = \sin2A = \sqrt{1-\cos^2 2A} = \sqrt{1-\frac{49}{81}} = \frac{4\sqrt{2}}{9}$。由正弦定理$\frac{b}{\sin B} = \frac{a}{\sin A}$,得$b = \frac{a\sin B}{\sin A} = \frac{6×\frac{4\sqrt{2}}{9}}{\frac{2\sqrt{2}}{3}} = 4$。设边$BC$上的高为$h_a$,则$S_{\triangle ABC} = \frac{1}{2}ah_a = \frac{1}{2}bc\sin A$,所以$h_a = \frac{bc\sin A}{a} = \frac{4×6×\frac{2\sqrt{2}}{3}}{6} = \frac{8\sqrt{2}}{3}$。
选择条件②:$b\sin C = \frac{10\sqrt{2}}{3}$。由正弦定理$\frac{b}{\sin B} = \frac{c}{\sin C}$,得$b\sin C = c\sin B = 6\sin B = \frac{10\sqrt{2}}{3}$,所以$\sin B = \frac{5\sqrt{2}}{9}$。因为$\sin A = \frac{2\sqrt{2}}{3} \approx 0.9428$,$\sin B = \frac{5\sqrt{2}}{9} \approx 0.7857$,且$A$为钝角,$B$为锐角,则$\cos B = \sqrt{1-\sin^2 B} = \sqrt{1-\frac{50}{81}} = \frac{\sqrt{31}}{9}$。所以$\sin C = \sin(A + B) = \sin A\cos B + \cos A\sin B = \frac{2\sqrt{2}}{3}×\frac{\sqrt{31}}{9} + (-\frac{1}{3})×\frac{5\sqrt{2}}{9} = \frac{2\sqrt{62}}{27}-\frac{5\sqrt{2}}{27} = \frac{\sqrt{2}(2\sqrt{31}-5)}{27}$。由正弦定理$\frac{a}{\sin A} = \frac{c}{\sin C}$,得$a = \frac{c\sin A}{\sin C} = \frac{6×\frac{2\sqrt{2}}{3}}{\frac{\sqrt{2}(2\sqrt{31}-5)}{27}} = \frac{4}{\frac{2\sqrt{31}-5}{27}} = \frac{108}{2\sqrt{31}-5}$。设边$BC$上的高为$h_a$,则$S_{\triangle ABC} = \frac{1}{2}ah_a = \frac{1}{2}bc\sin A$,所以$h_a = \frac{bc\sin A}{a} = \frac{b×6×\frac{2\sqrt{2}}{3}}{a} = \frac{4\sqrt{2}b}{a}$。又由正弦定理$\frac{b}{\sin B} = \frac{c}{\sin C}$,得$b = \frac{c\sin B}{\sin C} = \frac{6×\frac{5\sqrt{2}}{9}}{\frac{\sqrt{2}(2\sqrt{31}-5)}{27}} = \frac{\frac{10\sqrt{2}}{3}}{\frac{\sqrt{2}(2\sqrt{31}-5)}{27}} = \frac{10}{3}×\frac{27}{2\sqrt{31}-5} = \frac{90}{2\sqrt{31}-5}$。所以$h_a = \frac{4\sqrt{2}×\frac{90}{2\sqrt{31}-5}}{\frac{108}{2\sqrt{31}-5}} = \frac{4\sqrt{2}×90}{108} = \frac{10\sqrt{2}}{3}$。
选择条件③:△ABC 的面积为$10\sqrt{2}$。$S_{\triangle ABC} = \frac{1}{2}bc\sin A = \frac{1}{2}× b×6×\frac{2\sqrt{2}}{3} = 2\sqrt{2}b = 10\sqrt{2}$,所以$b = 5$。由余弦定理$a^2 = b^2 + c^2-2bc\cos A = 25 + 36-2×5×6×(-\frac{1}{3}) = 61 + 20 = 81$,所以$a = 9$。设边$BC$上的高为$h_a$,则$S_{\triangle ABC} = \frac{1}{2}ah_a = 10\sqrt{2}$,所以$h_a = \frac{20\sqrt{2}}{a} = \frac{20\sqrt{2}}{9}$。
(1) 由正弦定理$\frac{a}{\sin A} = \frac{c}{\sin C}$,得$a\sin C = c\sin A$。已知$a\sin C = 4\sqrt{2}$,所以$c\sin A = 4\sqrt{2}$。因为$\cos A = -\frac{1}{3}$,所以$A$为钝角,$\sin A = \sqrt{1-\cos^2 A} = \sqrt{1-\frac{1}{9}} = \frac{2\sqrt{2}}{3}$。代入得$c×\frac{2\sqrt{2}}{3} = 4\sqrt{2}$,解得$c = 6$。
(2) 由
(1)知$c = 6$,$\sin A = \frac{2\sqrt{2}}{3}$,$\cos A = -\frac{1}{3}$。
选择条件①:$a = 6$。由正弦定理$\frac{a}{\sin A} = \frac{c}{\sin C}$,得$\frac{6}{\frac{2\sqrt{2}}{3}} = \frac{6}{\sin C}$,所以$\sin C = \frac{2\sqrt{2}}{3}$。因为$c = 6$,$a = 6$,所以$a = c$,则$A = C$,又$\cos A = -\frac{1}{3}$,所以$C$为钝角,$\cos C = -\frac{1}{3}$。所以$B = \pi-A-C = \pi-2A$,$\sin B = \sin(\pi-2A) = \sin2A = 2\sin A\cos A = 2×\frac{2\sqrt{2}}{3}×(-\frac{1}{3}) = -\frac{4\sqrt{2}}{9}$(舍去,因为$\sin B > 0$)或利用$\cos2A = 2\cos^2 A-1 = 2×\frac{1}{9}-1 = -\frac{7}{9}$,$\sin B = \sin(\pi-2A) = \sin2A = \sqrt{1-\cos^2 2A} = \sqrt{1-\frac{49}{81}} = \frac{4\sqrt{2}}{9}$。由正弦定理$\frac{b}{\sin B} = \frac{a}{\sin A}$,得$b = \frac{a\sin B}{\sin A} = \frac{6×\frac{4\sqrt{2}}{9}}{\frac{2\sqrt{2}}{3}} = 4$。设边$BC$上的高为$h_a$,则$S_{\triangle ABC} = \frac{1}{2}ah_a = \frac{1}{2}bc\sin A$,所以$h_a = \frac{bc\sin A}{a} = \frac{4×6×\frac{2\sqrt{2}}{3}}{6} = \frac{8\sqrt{2}}{3}$。
选择条件②:$b\sin C = \frac{10\sqrt{2}}{3}$。由正弦定理$\frac{b}{\sin B} = \frac{c}{\sin C}$,得$b\sin C = c\sin B = 6\sin B = \frac{10\sqrt{2}}{3}$,所以$\sin B = \frac{5\sqrt{2}}{9}$。因为$\sin A = \frac{2\sqrt{2}}{3} \approx 0.9428$,$\sin B = \frac{5\sqrt{2}}{9} \approx 0.7857$,且$A$为钝角,$B$为锐角,则$\cos B = \sqrt{1-\sin^2 B} = \sqrt{1-\frac{50}{81}} = \frac{\sqrt{31}}{9}$。所以$\sin C = \sin(A + B) = \sin A\cos B + \cos A\sin B = \frac{2\sqrt{2}}{3}×\frac{\sqrt{31}}{9} + (-\frac{1}{3})×\frac{5\sqrt{2}}{9} = \frac{2\sqrt{62}}{27}-\frac{5\sqrt{2}}{27} = \frac{\sqrt{2}(2\sqrt{31}-5)}{27}$。由正弦定理$\frac{a}{\sin A} = \frac{c}{\sin C}$,得$a = \frac{c\sin A}{\sin C} = \frac{6×\frac{2\sqrt{2}}{3}}{\frac{\sqrt{2}(2\sqrt{31}-5)}{27}} = \frac{4}{\frac{2\sqrt{31}-5}{27}} = \frac{108}{2\sqrt{31}-5}$。设边$BC$上的高为$h_a$,则$S_{\triangle ABC} = \frac{1}{2}ah_a = \frac{1}{2}bc\sin A$,所以$h_a = \frac{bc\sin A}{a} = \frac{b×6×\frac{2\sqrt{2}}{3}}{a} = \frac{4\sqrt{2}b}{a}$。又由正弦定理$\frac{b}{\sin B} = \frac{c}{\sin C}$,得$b = \frac{c\sin B}{\sin C} = \frac{6×\frac{5\sqrt{2}}{9}}{\frac{\sqrt{2}(2\sqrt{31}-5)}{27}} = \frac{\frac{10\sqrt{2}}{3}}{\frac{\sqrt{2}(2\sqrt{31}-5)}{27}} = \frac{10}{3}×\frac{27}{2\sqrt{31}-5} = \frac{90}{2\sqrt{31}-5}$。所以$h_a = \frac{4\sqrt{2}×\frac{90}{2\sqrt{31}-5}}{\frac{108}{2\sqrt{31}-5}} = \frac{4\sqrt{2}×90}{108} = \frac{10\sqrt{2}}{3}$。
选择条件③:△ABC 的面积为$10\sqrt{2}$。$S_{\triangle ABC} = \frac{1}{2}bc\sin A = \frac{1}{2}× b×6×\frac{2\sqrt{2}}{3} = 2\sqrt{2}b = 10\sqrt{2}$,所以$b = 5$。由余弦定理$a^2 = b^2 + c^2-2bc\cos A = 25 + 36-2×5×6×(-\frac{1}{3}) = 61 + 20 = 81$,所以$a = 9$。设边$BC$上的高为$h_a$,则$S_{\triangle ABC} = \frac{1}{2}ah_a = 10\sqrt{2}$,所以$h_a = \frac{20\sqrt{2}}{a} = \frac{20\sqrt{2}}{9}$。
24. [2022 全国乙卷理,17]记△ABC 的内角$A,B,C$的对边分别为$a,b,c$,已知$\sin C\sin(A - B) = \sin B\sin(C - A)$.
(1) 求证:$2a^2 = b^2 + c^2$;
(2) 若$a = 5$,$\cos A = \frac{25}{31}$,求△ABC 的周长.
(1) 求证:$2a^2 = b^2 + c^2$;
(2) 若$a = 5$,$\cos A = \frac{25}{31}$,求△ABC 的周长.
答案:
24.
(1) 由$\sin C\sin(A - B) = \sin B\sin(C - A)$,得$\sin C(\sin A\cos B-\cos A\sin B) = \sin B(\sin C\cos A-\cos C\sin A)$,即$\sin A\sin C\cos B-\cos A\sin B\sin C = \sin B\sin C\cos A-\sin A\sin B\cos C$。因为$\sin B\sin C \neq 0$,所以$\sin A\cos B-\cos A\sin B = \sin B\cos A-\frac{\sin A\sin B\cos C}{\sin C}$。整理得$\sin A\cos B = 2\sin B\cos A-\frac{\sin A\sin B\cos C}{\sin C}$。由正弦定理和余弦定理,将角化为边:$\sin A = \frac{a}{2R}$,$\cos B = \frac{a^2 + c^2-b^2}{2ac}$,$\sin B = \frac{b}{2R}$,$\cos A = \frac{b^2 + c^2-a^2}{2bc}$,$\cos C = \frac{a^2 + b^2-c^2}{2ab}$,代入整理可得$2a^2 = b^2 + c^2$。
另证:由$\sin C\sin(A - B) = \sin B\sin(C - A)$,根据和差化积公式或直接展开,利用正弦定理化边,可得:$a(\cos B-\cos A) = b(\cos A-\cos C)$?更直接的方法:由已知得$\sin C\sin A\cos B-\sin C\cos A\sin B = \sin B\sin C\cos A-\sin B\cos C\sin A$,即$\sin A\sin C\cos B + \sin A\sin B\cos C = 2\sin B\sin C\cos A$。由正弦定理$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$,得$\sin A = \frac{a}{2R}$,$\sin B = \frac{b}{2R}$,$\sin C = \frac{c}{2R}$。代入得$\frac{a}{2R}·\frac{c}{2R}\cos B + \frac{a}{2R}·\frac{b}{2R}\cos C = 2·\frac{b}{2R}·\frac{c}{2R}\cos A$,即$ac\cos B + ab\cos C = 2bc\cos A$。由余弦定理:$ac·\frac{a^2 + c^2-b^2}{2ac} + ab·\frac{a^2 + b^2-c^2}{2ab} = 2bc·\frac{b^2 + c^2-a^2}{2bc}$,所以$\frac{a^2 + c^2-b^2}{2} + \frac{a^2 + b^2-c^2}{2} = b^2 + c^2-a^2$,即$a^2 = b^2 + c^2-a^2$,所以$2a^2 = b^2 + c^2$。
(2) 由
(1)知$2a^2 = b^2 + c^2$,又$a = 5$,所以$b^2 + c^2 = 2×25 = 50$。由余弦定理$\cos A = \frac{b^2 + c^2-a^2}{2bc} = \frac{50-25}{2bc} = \frac{25}{2bc} = \frac{25}{31}$,所以$bc = \frac{25}{2}×\frac{31}{25} = \frac{31}{2}$。所以$(b + c)^2 = b^2 + c^2 + 2bc = 50 + 31 = 81$,所以$b + c = 9$。故△ABC的周长为$a + b + c = 5 + 9 = 14$。
(1) 由$\sin C\sin(A - B) = \sin B\sin(C - A)$,得$\sin C(\sin A\cos B-\cos A\sin B) = \sin B(\sin C\cos A-\cos C\sin A)$,即$\sin A\sin C\cos B-\cos A\sin B\sin C = \sin B\sin C\cos A-\sin A\sin B\cos C$。因为$\sin B\sin C \neq 0$,所以$\sin A\cos B-\cos A\sin B = \sin B\cos A-\frac{\sin A\sin B\cos C}{\sin C}$。整理得$\sin A\cos B = 2\sin B\cos A-\frac{\sin A\sin B\cos C}{\sin C}$。由正弦定理和余弦定理,将角化为边:$\sin A = \frac{a}{2R}$,$\cos B = \frac{a^2 + c^2-b^2}{2ac}$,$\sin B = \frac{b}{2R}$,$\cos A = \frac{b^2 + c^2-a^2}{2bc}$,$\cos C = \frac{a^2 + b^2-c^2}{2ab}$,代入整理可得$2a^2 = b^2 + c^2$。
另证:由$\sin C\sin(A - B) = \sin B\sin(C - A)$,根据和差化积公式或直接展开,利用正弦定理化边,可得:$a(\cos B-\cos A) = b(\cos A-\cos C)$?更直接的方法:由已知得$\sin C\sin A\cos B-\sin C\cos A\sin B = \sin B\sin C\cos A-\sin B\cos C\sin A$,即$\sin A\sin C\cos B + \sin A\sin B\cos C = 2\sin B\sin C\cos A$。由正弦定理$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$,得$\sin A = \frac{a}{2R}$,$\sin B = \frac{b}{2R}$,$\sin C = \frac{c}{2R}$。代入得$\frac{a}{2R}·\frac{c}{2R}\cos B + \frac{a}{2R}·\frac{b}{2R}\cos C = 2·\frac{b}{2R}·\frac{c}{2R}\cos A$,即$ac\cos B + ab\cos C = 2bc\cos A$。由余弦定理:$ac·\frac{a^2 + c^2-b^2}{2ac} + ab·\frac{a^2 + b^2-c^2}{2ab} = 2bc·\frac{b^2 + c^2-a^2}{2bc}$,所以$\frac{a^2 + c^2-b^2}{2} + \frac{a^2 + b^2-c^2}{2} = b^2 + c^2-a^2$,即$a^2 = b^2 + c^2-a^2$,所以$2a^2 = b^2 + c^2$。
(2) 由
(1)知$2a^2 = b^2 + c^2$,又$a = 5$,所以$b^2 + c^2 = 2×25 = 50$。由余弦定理$\cos A = \frac{b^2 + c^2-a^2}{2bc} = \frac{50-25}{2bc} = \frac{25}{2bc} = \frac{25}{31}$,所以$bc = \frac{25}{2}×\frac{31}{25} = \frac{31}{2}$。所以$(b + c)^2 = b^2 + c^2 + 2bc = 50 + 31 = 81$,所以$b + c = 9$。故△ABC的周长为$a + b + c = 5 + 9 = 14$。
25. [2024 新高考Ⅰ卷,15]记△ABC 的内角$A,B,C$的对边分别为$a,b,c$,已知$\sin C = \sqrt{2}\cos B$,$a^2 + b^2 - c^2 = \sqrt{2}ab$.
(1) 求角$B$的大小;
(2) 若△ABC 的面积为$3 + \sqrt{3}$,求$c$.
(1) 求角$B$的大小;
(2) 若△ABC 的面积为$3 + \sqrt{3}$,求$c$.
答案:
25.
(1) 因为$\sin C = \sqrt{2}\cos B$,由正弦定理得$c = \sqrt{2}a\cos B$。又由余弦定理$a^2 + b^2-c^2 = 2ab\cos C$,结合已知$a^2 + b^2-c^2 = \sqrt{2}ab$,所以$2ab\cos C = \sqrt{2}ab$,因为$ab \neq 0$,所以$\cos C = \frac{\sqrt{2}}{2}$,又$C\in(0,\pi)$,所以$C = \frac{\pi}{4}$。因为$\sin C = \sin\frac{\pi}{4} = \frac{\sqrt{2}}{2}$,代入$\sin C = \sqrt{2}\cos B$得$\frac{\sqrt{2}}{2} = \sqrt{2}\cos B$,所以$\cos B = \frac{1}{2}$,又$B\in(0,\pi)$,所以$B = \frac{\pi}{3}$。
(2) 由
(1)知$B = \frac{\pi}{3}$,$C = \frac{\pi}{4}$,所以$A = \pi-B-C = \pi-\frac{\pi}{3}-\frac{\pi}{4} = \frac{5\pi}{12}$。由正弦定理$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$,得$a = 2R\sin A$,$b = 2R\sin B$,$c = 2R\sin C$。△ABC的面积$S = \frac{1}{2}ab\sin C = \frac{1}{2}(2R\sin A)(2R\sin B)\sin C = 2R^2\sin A\sin B\sin C = 3 + \sqrt{3}$。因为$\sin A = \sin\frac{5\pi}{12} = \sin(\frac{\pi}{4} + \frac{\pi}{6}) = \sin\frac{\pi}{4}\cos\frac{\pi}{6} + \cos\frac{\pi}{4}\sin\frac{\pi}{6} = \frac{\sqrt{2}}{2}×\frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2}×\frac{1}{2} = \frac{\sqrt{6}+\sqrt{2}}{4}$,$\sin B = \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$,$\sin C = \sin\frac{\pi}{4} = \frac{\sqrt{2}}{2}$,所以$2R^2×\frac{\sqrt{6}+\sqrt{2}}{4}×\frac{\sqrt{3}}{2}×\frac{\sqrt{2}}{2} = 3 + \sqrt{3}$。计算得$\frac{\sqrt{6}+\sqrt{2}}{4}×\frac{\sqrt{3}}{2}×\frac{\sqrt{2}}{2} = \frac{(\sqrt{6}+\sqrt{2})\sqrt{6}}{16} = \frac{6+\sqrt{12}}{16} = \frac{6+2\sqrt{3}}{16} = \frac{3+\sqrt{3}}{8}$。所以$2R^2×\frac{3+\sqrt{3}}{8} = 3 + \sqrt{3}$,解得$2R^2 = 8$,即$R^2 = 4$,$R = 2$。所以$c = 2R\sin C = 4×\frac{\sqrt{2}}{2} = 2\sqrt{2}$。
(1) 因为$\sin C = \sqrt{2}\cos B$,由正弦定理得$c = \sqrt{2}a\cos B$。又由余弦定理$a^2 + b^2-c^2 = 2ab\cos C$,结合已知$a^2 + b^2-c^2 = \sqrt{2}ab$,所以$2ab\cos C = \sqrt{2}ab$,因为$ab \neq 0$,所以$\cos C = \frac{\sqrt{2}}{2}$,又$C\in(0,\pi)$,所以$C = \frac{\pi}{4}$。因为$\sin C = \sin\frac{\pi}{4} = \frac{\sqrt{2}}{2}$,代入$\sin C = \sqrt{2}\cos B$得$\frac{\sqrt{2}}{2} = \sqrt{2}\cos B$,所以$\cos B = \frac{1}{2}$,又$B\in(0,\pi)$,所以$B = \frac{\pi}{3}$。
(2) 由
(1)知$B = \frac{\pi}{3}$,$C = \frac{\pi}{4}$,所以$A = \pi-B-C = \pi-\frac{\pi}{3}-\frac{\pi}{4} = \frac{5\pi}{12}$。由正弦定理$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$,得$a = 2R\sin A$,$b = 2R\sin B$,$c = 2R\sin C$。△ABC的面积$S = \frac{1}{2}ab\sin C = \frac{1}{2}(2R\sin A)(2R\sin B)\sin C = 2R^2\sin A\sin B\sin C = 3 + \sqrt{3}$。因为$\sin A = \sin\frac{5\pi}{12} = \sin(\frac{\pi}{4} + \frac{\pi}{6}) = \sin\frac{\pi}{4}\cos\frac{\pi}{6} + \cos\frac{\pi}{4}\sin\frac{\pi}{6} = \frac{\sqrt{2}}{2}×\frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2}×\frac{1}{2} = \frac{\sqrt{6}+\sqrt{2}}{4}$,$\sin B = \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$,$\sin C = \sin\frac{\pi}{4} = \frac{\sqrt{2}}{2}$,所以$2R^2×\frac{\sqrt{6}+\sqrt{2}}{4}×\frac{\sqrt{3}}{2}×\frac{\sqrt{2}}{2} = 3 + \sqrt{3}$。计算得$\frac{\sqrt{6}+\sqrt{2}}{4}×\frac{\sqrt{3}}{2}×\frac{\sqrt{2}}{2} = \frac{(\sqrt{6}+\sqrt{2})\sqrt{6}}{16} = \frac{6+\sqrt{12}}{16} = \frac{6+2\sqrt{3}}{16} = \frac{3+\sqrt{3}}{8}$。所以$2R^2×\frac{3+\sqrt{3}}{8} = 3 + \sqrt{3}$,解得$2R^2 = 8$,即$R^2 = 4$,$R = 2$。所以$c = 2R\sin C = 4×\frac{\sqrt{2}}{2} = 2\sqrt{2}$。
查看更多完整答案,请扫码查看