2025年启东中学作业本七年级数学上册苏科版连淮专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年启东中学作业本七年级数学上册苏科版连淮专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年启东中学作业本七年级数学上册苏科版连淮专版》

11. (10 分)有一块长方形的硬纸,正好可以分成 15 个小正方形,如图,试把它剪成 3 份,每份有 5 个小正方形相连,折起来都可以成为一个没有盖的正方体纸盒,应该怎样剪?
答案:
解:如答图.
       第11题答图
12. (10 分)如图是某长方体包装盒的展开图,具体数据如图所示,且长方体盒子的长是高的 2 倍.
(1)展开图的六个面分别标有如图所示的序号,则原包装盒与①相对的面是
.(填序号)
(2)若设长方体的高为 $ x \, cm $,则
①长方体的宽为
$\frac{35-4x}{2}$或$\frac{20-x}{2}$
$ cm $;(用含 $ x $ 的式子表示)
②求长方体包装盒的体积.
答案:
(1)⑥
(2)①$\frac{35-4x}{2}$或$\frac{20-x}{2}$
②解:长方形的长为$2x\ cm$,高为$x\ cm$,由题图可知长方体的宽为$\frac{35-4x}{2}\ cm$或$\frac{20-x}{2}\ cm$.根据题意,得$\frac{35-4x}{2}=\frac{20-x}{2}$,解得$x=5$,
即长方体的长为$10\ cm$,宽为$\frac{15}{2}\ cm$,
长方体的体积为$10×5×\frac{15}{2}=375(cm^3)$.
答:这个长方体包装盒的体积为$375\ cm^3$.
13. (10 分)当同一个平面图形绕不同的轴旋转时,得到的立体图形一般不同. 已知一个直角三角形,它的各边长如图所示.
(1)当三角形绕着长为 $ 3 \, cm $ 的边所在的直线旋转一周时,得到的几何体为
圆锥
,这个几何体的体积是
$16\pi\ cm^3$
;(结果保留 $ \pi $,圆锥的体积 $ = \dfrac{1}{3} \pi r^2 h $)
(2)当三角形绕着图中所示的虚线旋转一周时,你能求出得到的这个图形的体积吗?(结果保留 $ \pi $)

(2)解:三角形绕着题图中所示的虚线旋转一周时,得到的是一个圆柱挖去一个圆锥后剩余的几何体,其中圆柱和圆锥的底面半径均为$4\ cm$,高均为$3\ cm$,
得到的几何体的体积$V=\pi×4^2×3-\frac{1}{3}×\pi×4^2×3=32\pi(cm^3)$.
答案:
(1)圆锥 $16\pi\ cm^3$
(2)解:三角形绕着题图中所示的虚线旋转一周时,得到的是一个圆柱挖去一个圆锥后剩余的几何体,其中圆柱和圆锥的底面半径均为$4\ cm$,高均为$3\ cm$,
得到的几何体的体积$V=\pi×4^2×3-\frac{1}{3}×\pi×4^2×3=32\pi(cm^3)$.
14. (10 分)如图①所示的三棱柱,高为 $ 8 \, cm $,底面是一个边长为 $ 5 \, cm $ 的等边三角形.
(1)这个三棱柱有______条棱,______个面;
(2)图②框中的图形是该三棱柱的一种表面展开图的一部分,请将它补全(一种即可);
(3)要将该三棱柱的表面沿某些棱剪开,展开成一个平面图形,至少需剪开______条棱,需剪开棱的棱长的和的最大值为______ $ cm $.
答案:

(1)9 5
(2)解:如答图.
        第14题答图
(3)5 34

查看更多完整答案,请扫码查看

关闭