2025年名师帮同步学案九年级数学全一册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年名师帮同步学案九年级数学全一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年名师帮同步学案九年级数学全一册人教版》

1.(跨学科融合)如图,它是物理学中小孔成像的原理示意图,已知物体$AB = 30$,$AB// CD$,根据图中尺寸,则$CD$的长为 (
A
)

A. 10
B. 15
C. 20
D. 30
答案: A
2. 如图,圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形).已知桌面的直径为1.2m,桌面距离地面1m.若灯泡距离地面3m,则地上呈圆形的阴影部分的直径为
1.8
m.
答案: 1.8
3. 一斜坡长70m,它的高为5m,将重物从斜坡起点推到坡上20m处停下,停下地点的高度是
$\frac{10}{7}$
m.
答案: $\frac{10}{7}$
4. 为防水患,在漓江上游修筑了防洪堤,其截面为如图所示的梯形.堤的上底宽$AD$和堤高$DF$都是6m,其中$∠B = ∠CDF$.
(1)求证:$\triangle ABE\backsim\triangle CDF$;
证明:$\because AE \perp BC$,$DF \perp BC$,
$\therefore \angle AEB = \angle CFD = 90^{\circ}$,
又$\because \angle B = \angle CDF$,
$\therefore \triangle ABE \backsim \triangle CDF$;
(2)如果$\frac{AE}{BE}=2$,求堤的下底$BC$的长.
解:$\because \frac{AE}{BE} = 2$,$AE = DF = 6m$,
$\therefore BE = \frac{1}{2}AE = 3m$,
又$\because \triangle ABE \backsim \triangle CDF$,
$\therefore \frac{AE}{CF} = \frac{BE}{DF}$,
$\therefore CF = \frac{AE}{BE} \cdot DF = \frac{6}{3} × 6 = 12m$,
$\therefore BC = BE + EF + CF = BE + AD + CF = 3 + 6 + 12 = 21m$,
答:堤的下底 BC 的长为
21
m.
答案:
(1) 证明:$\because AE \perp BC$,$DF \perp BC$,
$\therefore \angle AEB = \angle CFD = 90^{\circ}$,
又$\because \angle B = \angle CDF$,
$\therefore \triangle ABE \backsim \triangle CDF$;
(2) 解:$\because \frac{AE}{BE} = 2$,$AE = DF = 6m$,
$\therefore BE = \frac{1}{2}AE = 3m$,
又$\because \triangle ABE \backsim \triangle CDF$,
$\therefore \frac{AE}{CF} = \frac{BE}{DF}$,
$\therefore CF = \frac{AE}{BE} \cdot DF = \frac{6}{3} × 6 = 12m$,
$\therefore BC = BE + EF + CF = BE + AD + CF = 3 + 6 + 12 = 21m$,
答:堤的下底 BC 的长为 21m.

查看更多完整答案,请扫码查看

关闭