2025年轻松作业本八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年轻松作业本八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年轻松作业本八年级数学上册人教版》

13. 如图,在△ABC中,AB= AC,点D、E在BC上,连接AD、AE.如果只添加一个条件使∠DAB= ∠EAC,那么添加的条件不能为 (
C
)

A. BD= CE
B. AD= AE
C. DA= DE
D. BE= CD
答案: C
14. 如图,在△ABC中,AB= AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC= ∠E= 60°.若BE= 6,DE= 2,则BC的长是 (
B
)

A. 6
B. 8
C. 9
D. 10
答案: B
15. 如图$,S_{△ABC}= 8 cm^2,AD$平分∠BAC,且AD⊥BD于点D,则$S_{△ADC}= $
4
$cm^2.$
答案: 4
16. (2024·内江中考)如图,在△ABC中,∠DCE= 40°,AE= AC,BC= BD,则∠ACB的度数为______
100°
.
答案: $100^{\circ}$
17. 如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE= 2,当EF+CF取得最小值时,∠ECF=
30°
.
答案: $30^{\circ}$
18. (2025·泗洪一模)如图,AB= AC,DB= DC,点E在AD上.求证:EB= EC.
答案: 解:$\because AB = AC$,$DB = DC$,$\therefore AD$ 是线段 $BC$ 的垂直平分线,$\because$ 点 $E$ 在 $AD$ 上,$\therefore EB = EC$.
19. 如图,在△ABC中,∠ACB= 90°,CM⊥AB于点M,AT平分∠BAC交CM于点D,交BC于点T,过点D作DE//AB交BC于点E.求证:CT= BE.
证明:过点 $T$ 作 $TF \perp AB$ 于点 $F$,$\because AT$ 平分 $\angle BAC$,$\angle ACB = 90^{\circ}$,$\therefore$
CT = TF
,$\because \angle ACB = 90^{\circ}$,$CM \perp AB$,$\therefore \angle ADM + \angle DAM = 90^{\circ}$,$\angle ATC + \angle CAT = 90^{\circ}$,$\because AT$ 平分 $\angle BAC$,$\therefore \angle DAM = \angle CAT$,$\therefore \angle ADM = \angle ATC$,$\because \angle ADM = \angle CDT$,$\therefore \angle CDT = \angle CTD$,$\therefore$
CD = CT
,又 $\because CT = TF$(已证),$\therefore$
CD = TF
,$\because CM \perp AB$,$DE // AB$,$\therefore \angle CDE = 90^{\circ}$,$\angle B = \angle DEC$,在 $\triangle CDE$ 和 $\triangle TFB$ 中,$\begin{cases} \angle DEC = \angle B, \\ \angle CDE = \angle TFB = 90^{\circ}, \\ CD = TF, \end{cases}$ $\therefore$
△CDE ≌ △TFB(AAS)
,$\therefore$
CE = TB
,$\therefore CE - TE = TB - TE$,即 $CT = BE$.
答案: 证明:过点 $T$ 作 $TF \perp AB$ 于点 $F$,$\because AT$ 平分 $\angle BAC$,$\angle ACB = 90^{\circ}$,$\therefore CT = TF$,$\because \angle ACB = 90^{\circ}$,$CM \perp AB$,$\therefore \angle ADM + \angle DAM = 90^{\circ}$,$\angle ATC + \angle CAT = 90^{\circ}$,$\because AT$ 平分 $\angle BAC$,$\therefore \angle DAM = \angle CAT$,$\therefore \angle ADM = \angle ATC$,$\because \angle ADM = \angle CDT$,$\therefore \angle CDT = \angle CTD$,$\therefore CD = CT$,又 $\because CT = TF$(已证),$\therefore CD = TF$,$\because CM \perp AB$,$DE // AB$,$\therefore \angle CDE = 90^{\circ}$,$\angle B = \angle DEC$,在 $\triangle CDE$ 和 $\triangle TFB$ 中,$\begin{cases} \angle DEC = \angle B, \\ \angle CDE = \angle TFB = 90^{\circ}, \\ CD = TF, \end{cases}$ $\therefore \triangle CDE \cong \triangle TFB(AAS)$,$\therefore CE = TB$,$\therefore CE - TE = TB - TE$,即 $CT = BE$.

查看更多完整答案,请扫码查看

关闭