2025年轻松作业本八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年轻松作业本八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年轻松作业本八年级数学上册人教版》

7. 如图,点D、E分别在AB、AC上,BD= CE,AB= AC,BE、CD相交于点O.
求证:∠B= ∠C.
小刚同学的证明过程如下:
证明:在△ABE和△ACD中,
{AB= AC,
BD= CE,……第一步
∠A= ∠A,
∴△ABE≌△ACD.……第二步
∴∠B= ∠C.……第三步
(1)小刚同学的证明过程中,第
步出现错误;
(2)请写出正确的证明过程.
证明:∵BD = CE,AB = AC,∴AB - BD = AC - CE。∴AD = AE。
在△ABE和△ACD中,$\begin{cases}AB = AC\\\angle A = \angle A\\AE = AD\end{cases}$,∴△ABE ≌ △ACD(SAS),∴∠B = ∠C。
答案: (1)一
(2)证明:$\because BD = CE$,$AB = AC$,$\therefore AB - BD = AC - CE$。$\therefore AD = AE$。
在$\triangle ABE$和$\triangle ACD$中,$\begin{cases}AB = AC\\\angle A = \angle A\\AE = AD\end{cases}$,$\therefore \triangle ABE \cong \triangle ACD$(SAS),$\therefore \angle B = \angle C$。
8. 已知:如图,在△ABC和△DEF中,B、E、C、F在同一条直线上.下面四个条件:①AB= DE;②AC= DF;③BE= CF;④∠ABC= ∠DEF.
(1)请选择其中的三个条件,使得△ABC≌△DEF(写出一种情况即可);
①②③(或①③④)

(2)在(1)的条件下,求证:△ABC≌△DEF.
证明:当选择①②③时,∵BE = CF,∴BE + EC = CF + EC,即BC = EF。在△ABC和△DEF中,$\begin{cases}AB = DE\\BC = EF\\AC = DF\end{cases}$,∴△ABC≌△DEF(SSS)。当选择①③④时,∵BE = CF,∴BE + EC = CF + EC,即BC = EF。在△ABC和△DEF中,$\begin{cases}AB = DE\\\angle ABC = \angle DEF\\BC = EF\end{cases}$,∴△ABC≌△DEF(SAS)。
答案: (1)解:由题知,选择的三个条件是:①②③;或者选择的三个条件是:①③④。
(2)证明:当选择①②③时,$\because BE = CF$,$\therefore BE + EC = CF + EC$,即$BC = EF$。在$\triangle ABC$和$\triangle DEF$中,$\begin{cases}AB = DE\\BC = EF\\AC = DF\end{cases}$,$\therefore \triangle ABC \cong \triangle DEF$(SSS)。当选择①③④时,$\because BE = CF$,$\therefore BE + EC = CF + EC$,即$BC = EF$。在$\triangle ABC$和$\triangle DEF$中,$\begin{cases}AB = DE\\\angle ABC = \angle DEF\\BC = EF\end{cases}$,$\therefore \triangle ABC \cong \triangle DEF$(SAS)。
9. 如图,BE= CF,DE垂直AB的延长线于点E,DF⊥AC于点F,且DB= DC.求证:AD是∠BAC的平分线.
证明:
∵ DE ⊥ AB,DF ⊥ AC,∴ ∠ BED = ∠ DFC = 90°。在Rt△ DEB和Rt△ DFC中,{BE = CFDB = DC,∴ Rt△ DEB ≌ Rt△ DFC。∴ DE = DF。∴ AD是∠BAC的平分线。

答案: 证明:$\because DE \perp AB$,$DF \perp AC$,$\therefore \angle BED = \angle DFC = 90^{\circ}$。在$Rt\triangle DEB$和$Rt\triangle DFC$中,$\begin{cases}BE = CF\\DB = DC\end{cases}$,$\therefore Rt\triangle DEB \cong Rt\triangle DFC$。$\therefore DE = DF$。$\therefore AD$是$\angle BAC$的平分线。
10. 如图,将Rt△BAF沿AF所在直线平移到Rt△DCE的位置,使平移的距离AC= AB,过点F作FG⊥BC于点G,连接DG、EG.求证:△EFG≌△DCG.
证明:$\because Rt\triangle BAF$平移得到$Rt\triangle DCE$,$\therefore AB = DC$,$AF = EC$。$\because AB = AC$,$\therefore DC = AC$。$\because AC = CF + AF = CF + EC = EF$,$\therefore DC = EF$。$\because \angle BAC = 90^{\circ}$,$AC = AB$,$\therefore \angle BCF = 45^{\circ}$。$\because DC \perp EF$,$FG \perp BC$,$\therefore \angle DCG = 45^{\circ}$,$\angle GFC = \angle GCF = 45^{\circ}$。$\therefore CG = GF$,$\angle DCG = \angle GFC$。在$\triangle EFG$和$\triangle DCG$中,$\begin{cases}GF = GC\\\angle GFE = \angle GCD\\EF = DC\end{cases}$,$\therefore \triangle EFG \cong \triangle DCG$(
SAS
)。
答案: 证明:$\because Rt\triangle BAF$平移得到$Rt\triangle DCE$,$\therefore AB = DC$,$AF = EC$。$\because AB = AC$,$\therefore DC = AC$。$\because AC = CF + AF = CF + EC = EF$,$\therefore DC = EF$。$\because \angle BAC = 90^{\circ}$,$AC = AB$,$\therefore \angle BCF = 45^{\circ}$。$\because DC \perp EF$,$FG \perp BC$,$\therefore \angle DCG = 45^{\circ}$,$\angle GFC = \angle GCF = 45^{\circ}$。$\therefore CG = GF$,$\angle DCG = \angle GFC$。在$\triangle EFG$和$\triangle DCG$中,$\begin{cases}GF = GC\\\angle GFE = \angle GCD\\EF = DC\end{cases}$,$\therefore \triangle EFG \cong \triangle DCG$(SAS)。

查看更多完整答案,请扫码查看

关闭