第106页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
8. (2024秋·烟台期中)在下列各式中:①$(\frac {-2n}{a^{2}b})^{2}$;②$-\frac {8m^{4}n^{2}}{a^{2}b}$;③$\frac {8m^{4}n^{2}}{a^{5}b}\cdot \frac {an}{bm^{2}}$;④$\frac {4n^{2}}{ab^{2}}÷a^{3}$,相等的两个式子是 (
A. ①②
B. ①④
C. ②③
D. ③④
B
)A. ①②
B. ①④
C. ②③
D. ③④
答案:
B
9. (1)(2024秋·娄底期中)计算:$(-\frac {b}{2a})^{2}\cdot (\frac {3a}{b})^{3}÷\frac {a^{2}}{4b}=$
(2) 计算$\frac {x^{2}-2xy+y^{2}}{x^{2}}÷\frac {x-y}{x}$的结果为
$\frac{27}{a}$
;(2) 计算$\frac {x^{2}-2xy+y^{2}}{x^{2}}÷\frac {x-y}{x}$的结果为
$\frac{x - y}{x}$
.
答案:
(1) $\frac{27}{a}$
(2) $\frac{x - y}{x}$
(1) $\frac{27}{a}$
(2) $\frac{x - y}{x}$
10. 计算:
(1)$(-\frac {x}{y})^{2}\cdot (-\frac {x^{2}}{y^{3}})^{3}÷(-\frac {x}{y})^{4}=$
(2)$(-\frac {a}{b})^{2}\cdot (-\frac {b}{a})^{3}÷(-ab^{4})=$
(1)$(-\frac {x}{y})^{2}\cdot (-\frac {x^{2}}{y^{3}})^{3}÷(-\frac {x}{y})^{4}=$
$-\frac{x^{4}}{y^{7}}$
;(2)$(-\frac {a}{b})^{2}\cdot (-\frac {b}{a})^{3}÷(-ab^{4})=$
$\frac{1}{a^{2}b^{3}}$
.
答案:
(1) $-\frac{x^{4}}{y^{7}}$
(2) $\frac{1}{a^{2}b^{3}}$
(1) $-\frac{x^{4}}{y^{7}}$
(2) $\frac{1}{a^{2}b^{3}}$
11. 先化简,再求值:$[\frac {xy}{(x-y)^{2}}]^{2}\cdot (\frac {x-y}{xy^{2}})^{2}÷(\frac {1}{xy-y^{2}})^{3}$,其中$x= -2,y= 4$.
解:$[\frac{xy}{(x - y)^{2}}]^{2} \cdot (\frac{x - y}{xy^{2}})^{2} ÷ (\frac{1}{xy - y^{2}})^{3} = \frac{(xy)^{2}}{(x - y)^{4}} \cdot \frac{(x - y)^{2}}{x^{2}y^{4}} ÷ \frac{1}{[y(x - y)]^{3}} = \frac{x^{2}y^{2}}{(x - y)^{4}} \cdot \frac{(x - y)^{2}}{x^{2}y^{4}} ÷ \frac{1}{y^{3}(x - y)^{3}} = \frac{1}{y^{2}(x - y)^{2}} × y^{3}(x - y)^{3} = $
解:$[\frac{xy}{(x - y)^{2}}]^{2} \cdot (\frac{x - y}{xy^{2}})^{2} ÷ (\frac{1}{xy - y^{2}})^{3} = \frac{(xy)^{2}}{(x - y)^{4}} \cdot \frac{(x - y)^{2}}{x^{2}y^{4}} ÷ \frac{1}{[y(x - y)]^{3}} = \frac{x^{2}y^{2}}{(x - y)^{4}} \cdot \frac{(x - y)^{2}}{x^{2}y^{4}} ÷ \frac{1}{y^{3}(x - y)^{3}} = \frac{1}{y^{2}(x - y)^{2}} × y^{3}(x - y)^{3} = $
$xy - y^{2}$
,当 $x = -2$,$y = 4$ 时,原式 $= (-2) × 4 - 4^{2} = $$-24$
。
答案:
解:$[\frac{xy}{(x - y)^{2}}]^{2} \cdot (\frac{x - y}{xy^{2}})^{2} \div (\frac{1}{xy - y^{2}})^{3} = \frac{(xy)^{2}}{(x - y)^{4}} \cdot \frac{(x - y)^{2}}{x^{2}y^{4}} \div \frac{1}{[y(x - y)]^{3}} = \frac{x^{2}y^{2}}{(x - y)^{4}} \cdot \frac{(x - y)^{2}}{x^{2}y^{4}} \div \frac{1}{y^{3}(x - y)^{3}} = \frac{1}{y^{2}(x - y)^{2}} \times y^{3}(x - y)^{3} = xy - y^{2}$,当 $x = -2$,$y = 4$ 时,原式 $= (-2) \times 4 - 4^{2} = -8 - 16 = -24$。
12. 已知$A= \frac {x^{2}}{x^{2}-2xy}÷\frac {x^{2}-4y^{2}}{x^{2}-4xy+4y^{2}}$.
(1) 化简A;
(2) 若$x^{2}-6xy+9y^{2}= 0$,求A的值.
(1)
(2)
(1) 化简A;
(2) 若$x^{2}-6xy+9y^{2}= 0$,求A的值.
(1)
$\frac{x}{x + 2y}$
;(2)
$\frac{3}{5}$
.
答案:
解:
(1) $A = \frac{x^{2}}{x^{2} - 2xy} \div \frac{x^{2} - 4y^{2}}{x^{2} - 4xy + 4y^{2}} = \frac{x^{2}}{x(x - 2y)} \times \frac{(x - 2y)^{2}}{(x + 2y)(x - 2y)} = \frac{x}{x + 2y}$;
(2) $\because x^{2} - 6xy + 9y^{2} = 0$,$\therefore (x - 3y)^{2} = 0$。$\therefore x - 3y = 0$。$\therefore x = 3y$。$\therefore A = \frac{3y}{3y + 2y} = \frac{3y}{5y} = \frac{3}{5}$。
(1) $A = \frac{x^{2}}{x^{2} - 2xy} \div \frac{x^{2} - 4y^{2}}{x^{2} - 4xy + 4y^{2}} = \frac{x^{2}}{x(x - 2y)} \times \frac{(x - 2y)^{2}}{(x + 2y)(x - 2y)} = \frac{x}{x + 2y}$;
(2) $\because x^{2} - 6xy + 9y^{2} = 0$,$\therefore (x - 3y)^{2} = 0$。$\therefore x - 3y = 0$。$\therefore x = 3y$。$\therefore A = \frac{3y}{3y + 2y} = \frac{3y}{5y} = \frac{3}{5}$。
13. 甲、乙两人分别从相距s km的两地同时出发,若同向而行,经过$m_{1}$h甲追上乙;若相向而行,经过$m_{2}$h甲、乙两人相遇.设甲的平均速度为$v_{1}km/h$,乙的平均速度为$v_{2}km/h$,那么$\frac {v_{1}}{v_{2}}$等于多少?(用含$m_{1}$、$m_{2}$的式子表示,并说明理由)
答案:
解:依题意,得:$m_{1}v_{1} - m_{1}v_{2} = s$,$m_{2}v_{1} + m_{2}v_{2} = s$,$\therefore m_{1}v_{1} - m_{1}v_{2} = m_{2}v_{1} + m_{2}v_{2}$。$\therefore m_{1}v_{1} - m_{2}v_{1} = m_{1}v_{2} + m_{2}v_{2}$,$(m_{1} - m_{2})v_{1} = (m_{1} + m_{2})v_{2}$。$\therefore \frac{v_{1}}{v_{2}} = \frac{m_{1} + m_{2}}{m_{1} - m_{2}}$。
查看更多完整答案,请扫码查看