第44页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
17. 如图,△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,连接DE、DF,∠EDF+∠BAC= 180°.求证:DE= DF.

答案:
证明:在$AB$上截取$AG = AF$,连接$DG$,如图所示。$\because AD$是$\angle BAC$的平分线,$\therefore \angle 1 = \angle 2$。在$\triangle ADG$与$\triangle ADF$中,$\begin{cases}AG = AF\\\angle 1 = \angle 2\\AD = AD\end{cases}$,$\therefore \triangle AGD \cong \triangle AFD$(SAS)。$\therefore \angle AGD = \angle AFD$,$DG = DF$。又$\because \angle AED + \angle EDF + \angle DFA + \angle FAE = 360^{\circ}$,$\angle EDF + \angle BAC = 180^{\circ}$,$\therefore \angle AED + \angle AFD = 180^{\circ}$。又$\angle 4 + \angle AGD = 180^{\circ}$,$\therefore \angle 4 = \angle 3$。$\therefore DE = DG$。$\therefore DE = DF$。
证明:在$AB$上截取$AG = AF$,连接$DG$,如图所示。$\because AD$是$\angle BAC$的平分线,$\therefore \angle 1 = \angle 2$。在$\triangle ADG$与$\triangle ADF$中,$\begin{cases}AG = AF\\\angle 1 = \angle 2\\AD = AD\end{cases}$,$\therefore \triangle AGD \cong \triangle AFD$(SAS)。$\therefore \angle AGD = \angle AFD$,$DG = DF$。又$\because \angle AED + \angle EDF + \angle DFA + \angle FAE = 360^{\circ}$,$\angle EDF + \angle BAC = 180^{\circ}$,$\therefore \angle AED + \angle AFD = 180^{\circ}$。又$\angle 4 + \angle AGD = 180^{\circ}$,$\therefore \angle 4 = \angle 3$。$\therefore DE = DG$。$\therefore DE = DF$。
18. 如图,在四边形ABCD中,AD//BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE,交BC的延长线于点F.求证:
(1)FC= AD;
证明:(1)
(2)AB= BC+AD.
证明:(2)
(1)FC= AD;
证明:(1)
∵E是CD的中点,∴DE = CE。∵AD // BC,∴∠ADE = ∠FCE,∠DAE = ∠CFE。∴△ADE ≌ △FCE。∴FC = AD
;(2)AB= BC+AD.
证明:(2)
∵△ADE ≌ △FCE,∴AE = FE。∵BE ⊥ AE,∴∠AEB = ∠FEB = 90°。又∵BE = BE,∴△ABE ≌ △FBE。∴AB = BF。又∵FB = BC + CF = BC + AD,∴AB = BC + AD
。
答案:
证明:(1)$\because E$是$CD$的中点,$\therefore DE = CE$。$\because AD // BC$,$\therefore \angle ADE = \angle FCE$,$\angle DAE = \angle CFE$。$\therefore \triangle ADE \cong \triangle FCE$。$\therefore FC = AD$;
(2)$\because \triangle ADE \cong \triangle FCE$,$\therefore AE = FE$。$\because BE \perp AE$,$\therefore \angle AEB = \angle FEB = 90^{\circ}$。又$\because BE = BE$,$\therefore \triangle ABE \cong \triangle FBE$。$\therefore AB = BF$。又$\because FB = BC + CF = BC + AD$,$\therefore AB = BC + AD$。
(2)$\because \triangle ADE \cong \triangle FCE$,$\therefore AE = FE$。$\because BE \perp AE$,$\therefore \angle AEB = \angle FEB = 90^{\circ}$。又$\because BE = BE$,$\therefore \triangle ABE \cong \triangle FBE$。$\therefore AB = BF$。又$\because FB = BC + CF = BC + AD$,$\therefore AB = BC + AD$。
19. 如图①,在△ABC中,∠A= 120°,∠C= 20°,BD平分∠ABC,交AC于点D.
(1)求证:BD= CD;
(2)如图②,若∠BAC的角平分线AE交BC于点E,求证:AB+BE= AC;
(3)如图③,若∠BAC的外角平分线AE交CB的延长线于点E,则(2)中的结论是否成立?若成立,给出证明;若不成立,写出正确的结论.

(1)求证:BD= CD;
(2)如图②,若∠BAC的角平分线AE交BC于点E,求证:AB+BE= AC;
(3)如图③,若∠BAC的外角平分线AE交CB的延长线于点E,则(2)中的结论是否成立?若成立,给出证明;若不成立,写出正确的结论.
答案:
(1)证明:$\because \angle A = 120^{\circ}$,$\angle C = 20^{\circ}$,$\therefore \angle ABC = 180^{\circ} - 120^{\circ} - 20^{\circ} = 40^{\circ}$。$\because BD$平分$\angle ABC$,$\therefore \angle ABD = \angle DBC = \frac{1}{2} \angle ABC = 20^{\circ}$。$\therefore \angle DBC = \angle C = 20^{\circ}$。$\therefore BD = CD$;
(2)证明:如图①,过点$E$作$EF // BD$交$AC$于点$F$,$\therefore \angle FEC = \angle DBC = 20^{\circ}$。$\therefore \angle FEC = \angle C = 20^{\circ}$。$\therefore \angle AFE = 40^{\circ}$,$FE = FC$。$\therefore \angle AFE = \angle ABC$。$\because AE$是$\angle BAC$的平分线,$\therefore \angle BAE = \angle FAE$。在$\triangle ABE$和$\triangle AFE$中,$\begin{cases}\angle BAE = \angle FAE\\\angle ABE = \angle AFE\\AE = AE\end{cases}$,$\therefore \triangle ABE \cong \triangle AFE$(AAS)。$\therefore BE = EF$。$\therefore BE = EF = FC$,$AB = AF$。$\therefore AB + BE = AF + FC = AC$;
(3)(2)中的结论不成立,正确的结论是$BE - AB = AC$。理由如下:如图③,过点$A$作$AF // BD$交$BE$于点$F$,$\therefore \angle AFC = \angle DBC = 20^{\circ}$。$\therefore \angle AFC = \angle C = 20^{\circ}$。$\therefore AF = AC$。$\because AE$是$\angle BAC$的外角平分线,$\therefore \angle EAB = \frac{1}{2}(180^{\circ} - \angle BAC) = 30^{\circ}$。$\because \angle ABC = 40^{\circ}$,$\therefore \angle E = \angle ABC - \angle EAB = 10^{\circ}$。$\because BD$平分$\angle ABC$,$\therefore \angle ABD = \frac{1}{2} \angle ABC = 20^{\circ}$。$\because AF // BD$,$\therefore \angle FAB = \angle ABD = 20^{\circ}$。$\therefore \angle FAE = \angle EAB - \angle FAB = 10^{\circ}$。$\therefore \angle E = \angle FAE = 10^{\circ}$。$\therefore FE = AF$。$\therefore FE = AF = AC$,$\therefore BE - AB = BE - BF = EF = AC$。
(1)证明:$\because \angle A = 120^{\circ}$,$\angle C = 20^{\circ}$,$\therefore \angle ABC = 180^{\circ} - 120^{\circ} - 20^{\circ} = 40^{\circ}$。$\because BD$平分$\angle ABC$,$\therefore \angle ABD = \angle DBC = \frac{1}{2} \angle ABC = 20^{\circ}$。$\therefore \angle DBC = \angle C = 20^{\circ}$。$\therefore BD = CD$;
(2)证明:如图①,过点$E$作$EF // BD$交$AC$于点$F$,$\therefore \angle FEC = \angle DBC = 20^{\circ}$。$\therefore \angle FEC = \angle C = 20^{\circ}$。$\therefore \angle AFE = 40^{\circ}$,$FE = FC$。$\therefore \angle AFE = \angle ABC$。$\because AE$是$\angle BAC$的平分线,$\therefore \angle BAE = \angle FAE$。在$\triangle ABE$和$\triangle AFE$中,$\begin{cases}\angle BAE = \angle FAE\\\angle ABE = \angle AFE\\AE = AE\end{cases}$,$\therefore \triangle ABE \cong \triangle AFE$(AAS)。$\therefore BE = EF$。$\therefore BE = EF = FC$,$AB = AF$。$\therefore AB + BE = AF + FC = AC$;
(3)(2)中的结论不成立,正确的结论是$BE - AB = AC$。理由如下:如图③,过点$A$作$AF // BD$交$BE$于点$F$,$\therefore \angle AFC = \angle DBC = 20^{\circ}$。$\therefore \angle AFC = \angle C = 20^{\circ}$。$\therefore AF = AC$。$\because AE$是$\angle BAC$的外角平分线,$\therefore \angle EAB = \frac{1}{2}(180^{\circ} - \angle BAC) = 30^{\circ}$。$\because \angle ABC = 40^{\circ}$,$\therefore \angle E = \angle ABC - \angle EAB = 10^{\circ}$。$\because BD$平分$\angle ABC$,$\therefore \angle ABD = \frac{1}{2} \angle ABC = 20^{\circ}$。$\because AF // BD$,$\therefore \angle FAB = \angle ABD = 20^{\circ}$。$\therefore \angle FAE = \angle EAB - \angle FAB = 10^{\circ}$。$\therefore \angle E = \angle FAE = 10^{\circ}$。$\therefore FE = AF$。$\therefore FE = AF = AC$,$\therefore BE - AB = BE - BF = EF = AC$。
查看更多完整答案,请扫码查看