2025年1加1轻巧夺冠优化训练八年级数学下册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年1加1轻巧夺冠优化训练八年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年1加1轻巧夺冠优化训练八年级数学下册人教版》

10 如图,AD为等边△ABC的边BC上的高,AB = 4,AE = 1,P为AD上一动点,则PE + PB的最小值为 ( )
第10题图
A.$2\sqrt{3}$
B.$\sqrt{13}$
C.$\sqrt{14}$
D.$\sqrt{15}$
答案: B 解析:$\because$点$B$、$C$关于直线$AD$对称,$\therefore$连接$CE$交$AD$于点$P$,此时$PE + PB$最小。作$EF \perp BC$于点$F$。$\because AB = 4$,$AE = 1$,$\therefore BE = 3$。又$\angle EBF = 60^{\circ}$,$\therefore \angle BEF = 30^{\circ}$,$\therefore BF = \frac{1}{2}BE = \frac{3}{2}$,$\therefore CF = CB - BF = 4 - \frac{3}{2} = \frac{5}{2}$。又$EF^2 = BE^2 - BF^2 = 3^2 - (\frac{3}{2})^2 = 9 - \frac{9}{4} = \frac{27}{4}$,$\therefore CE^2 = EF^2 + CF^2 = 13$,$\therefore CE = \sqrt{13}$。
11 若等边三角形的边长是a,则它的面积为_______.
答案: $\frac{\sqrt{3}}{4}a^2$ 解析:如图,在等边$\triangle ABC$中,作$AD \perp BC$于点$D$,则$BD = CD = \frac{a}{2}$。在$Rt\triangle ABD$中,$AB^2 = AD^2 + BD^2$,$\therefore AD^2 = AB^2 - BD^2 = a^2 - (\frac{a}{2})^2 = a^2 - \frac{1}{4}a^2 = \frac{3}{4}a^2$,$\therefore AD = \frac{\sqrt{3}}{2}a$,$\therefore S_{\triangle ABC} = \frac{1}{2}BC \cdot AD = \frac{1}{2}a \cdot \frac{\sqrt{3}}{2}a = \frac{\sqrt{3}}{4}a^2$。
12 如图,在△ABC中,AB = BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD = 45°,AD与BE交于点F,连接CF.
(1)求证:BF = 2AE.
(2)若CD = $\sqrt{2}$,求AD的长.
第12题图
答案: (1)证明:$\because AD \perp BC$,$\therefore \angle ADC = \angle BDF = 90^{\circ}$。又$\because \angle BAD = 45^{\circ}$,$\therefore AD = BD$。$\because BE \perp AC$,$AB = BC$,$\therefore AE = CE = \frac{1}{2}AC$,$\angle AEF = \angle BDF = 90^{\circ}$。又$\angle AFE = \angle DFB$,$\therefore \angle CAD = \angle DBF$。在$\triangle ADC$和$\triangle BDF$中,$\angle CAD = \angle FBD$,$AD = BD$,$\angle ADC = \angle BDF$,$\therefore \triangle ADC \cong \triangle BDF$,$\therefore AC = BF$,$\therefore BF = 2AE$。 (2)解:$\because \triangle ADC \cong \triangle BDF$,$\therefore CD = FD = \sqrt{2}$,由勾股定理,得$CF = 2$。$\because BE$垂直平分$AC$,$\therefore AF = CF = 2$,$\therefore AD = AF + FD = 2 + \sqrt{2}$。
13 (原创题)如图,在△ABC中,AC = BC,∠ACB = 90°,D是AB边上一点,且AD = 6,BD = 8,求CD的长.
第13题图
答案: 解:作$CE \perp AB$于点$E$。$\because AC = BC$,$\therefore \angle ACE = \frac{1}{2}\angle ACB = \frac{1}{2} \times 90^{\circ} = 45^{\circ}$,且$AE = BE = \frac{1}{2}AB = \frac{1}{2} \times (AD + BD) = \frac{1}{2} \times (6 + 8) = \frac{1}{2} \times 14 = 7$,$\therefore DE = AE - AD = 7 - 6 = 1$。$\because \angle CEA = 90^{\circ}$,$\angle ACE = 45^{\circ}$,$\therefore \angle A = 45^{\circ}$,$\therefore \angle A = \angle ACE$,$\therefore CE = AE = 7$。在$Rt\triangle CED$中,$CD^2 = CE^2 + DE^2 = 7^2 + 1^2 = 50$,$\therefore CD = \sqrt{50} = 5\sqrt{2}$。
14 (探究题)如图,点C为线段BD上一动点,分别过点B、D作AB⊥BD,DE⊥BD,连接AC、EC,已知AB = 5,DE = 1,BD = 8,设BC = x.
(1)用含x的代数式表示AC + CE的长.
(2)请问:点C满足什么条件时,AC + CE最小?最小为多少?
(3)根据(2)中的规律和结论,请构图求代数式$\sqrt{x^{2}+4}+\sqrt{(12 - x)^{2}+9}$的最小值.
第14题图
答案: 解:(1)由勾股定理,得$AC = \sqrt{AB^2 + BC^2} = \sqrt{5^2 + x^2} = \sqrt{x^2 + 25}$,$CE = \sqrt{DE^2 + DC^2} = \sqrt{1^2 + (8 - x)^2} = \sqrt{(8 - x)^2 + 1}$,$\therefore AC + CE = \sqrt{x^2 + 25} + \sqrt{(8 - x)^2 + 1}$。 (2)当点$A$、$C$、$E$在同一条直线上时,$AC + CE$的值最小,如图①。 平移线段$BD$,使$B$点与$A$点重合,$D$点的对应点是$F$,连接$DF$,则$AF = BD = 8$,$DF = AB = 5$,$\angle AFE = 90^{\circ}$。在$Rt\triangle AEF$中,$AE^2 = AF^2 + EF^2 = 8^2 + (5 + 1)^2 = 64 + 36 = 100$,$\therefore AE = 10$,$\therefore AC + CE$的最小值为10。 (3)如图②,$C$为线段$BD$上一点,$AB \perp BD$,$ED \perp BD$,且$AB = 2$,$DE = 3$,$BD = 12$,设$BC = x$,则$AC + EC = \sqrt{2^2 + x^2} + \sqrt{3^2 + (12 - x)^2} = \sqrt{x^2 + 4} + \sqrt{(12 - x)^2 + 9}$,当$A$、$C$、$E$在同一条直线上时,$\sqrt{x^2 + 4} + \sqrt{(12 - x)^2 + 9}$的值最小。同(2)道理一样可求得最小值为13。

查看更多完整答案,请扫码查看

关闭