第13页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
1 计算:$(3\sqrt{2}-2\sqrt{3})(2\sqrt{3}+3\sqrt{2})=$________,$\frac{2}{3}\sqrt{\frac{5}{8}}\div\frac{1}{6}\sqrt{\frac{5}{2}}=$________.
答案:
6 2 解析:
\[
\begin{aligned}
&(3\sqrt{2}-2\sqrt{3})(2\sqrt{3}+3\sqrt{2})\\
=&(3\sqrt{2}-2\sqrt{3})(3\sqrt{2}+2\sqrt{3})\\
=&(3\sqrt{2})^{2}-(2\sqrt{3})^{2}\\
=&18 - 12\\
=&6
\end{aligned}
\]
\[
\begin{aligned}
&\frac{2}{3}\sqrt{\frac{5}{8}}\div\frac{1}{6}\sqrt{\frac{5}{2}}\\
=&\frac{2}{3}\times6\sqrt{\frac{5}{8}\times\frac{2}{5}}\\
=&4\sqrt{\frac{1}{4}}\\
=&4\times\frac{1}{2}\\
=&2
\end{aligned}
\]
2 计算:$(\sqrt{3}+2)^{2021}(\sqrt{3}-2)^{2022}=$________.
答案:
$2-\sqrt{3}$ 解析:
\[
\begin{aligned}
&(\sqrt{3}+2)^{2021}(\sqrt{3}-2)^{2022}\\
=&[(\sqrt{3}+2)(\sqrt{3}-2)]^{2021}\cdot(\sqrt{3}-2)\\
=&(3 - 4)^{2021}\cdot(\sqrt{3}-2)\\
=&(-1)^{2021}\cdot(\sqrt{3}-2)\\
=&-(\sqrt{3}-2)\\
=&2-\sqrt{3}
\end{aligned}
\]
3 计算:
(1)$\sqrt{12}-\sqrt[3]{8}+|1 - \sqrt{3}|$;
(2)$\sqrt[3]{-8}+\sqrt{12}-9\sqrt{\frac{1}{3}}+(3\sqrt{2}+4)(3\sqrt{2}-4)$.
(1)$\sqrt{12}-\sqrt[3]{8}+|1 - \sqrt{3}|$;
(2)$\sqrt[3]{-8}+\sqrt{12}-9\sqrt{\frac{1}{3}}+(3\sqrt{2}+4)(3\sqrt{2}-4)$.
答案:
解:
(1) 原式$=2\sqrt{3}-2+\sqrt{3}-1 = 3\sqrt{3}-3$。
(2) 原式$=-2 + 2\sqrt{3}-9\times\frac{\sqrt{3}}{3}+(18 - 16)$ \[ \begin{aligned} &=-2 + 2\sqrt{3}-3\sqrt{3}+2\\ &=-\sqrt{3} \end{aligned} \]
(1) 原式$=2\sqrt{3}-2+\sqrt{3}-1 = 3\sqrt{3}-3$。
(2) 原式$=-2 + 2\sqrt{3}-9\times\frac{\sqrt{3}}{3}+(18 - 16)$ \[ \begin{aligned} &=-2 + 2\sqrt{3}-3\sqrt{3}+2\\ &=-\sqrt{3} \end{aligned} \]
4 (1)计算:$|2 - \sqrt{3}|+(2\sqrt{3})^{2}-(\sqrt{48}-\sqrt{\frac{1}{10}}\times\sqrt{30})$.
(2)实数$a$,$b$在数轴上对应点的位置如图所示,化简:$\sqrt{a^{2}}-\sqrt{b^{2}}+\sqrt{(a - b)^{2}}$.

(2)实数$a$,$b$在数轴上对应点的位置如图所示,化简:$\sqrt{a^{2}}-\sqrt{b^{2}}+\sqrt{(a - b)^{2}}$.
答案:
解:
(1) 原式$=2-\sqrt{3}+12-(4\sqrt{3}-\sqrt{\frac{1}{10}\times30})$ \[ \begin{aligned} &=2-\sqrt{3}+12-4\sqrt{3}+\sqrt{3}\\ &=14 - 4\sqrt{3} \end{aligned} \]
(2) 由数轴知$a\lt -1$,$b\gt 1$, \[ \begin{aligned} &
\therefore原式=-a - b-(a - b)\\ &=-a - b - a + b\\ &=-2a \end{aligned} \]
(1) 原式$=2-\sqrt{3}+12-(4\sqrt{3}-\sqrt{\frac{1}{10}\times30})$ \[ \begin{aligned} &=2-\sqrt{3}+12-4\sqrt{3}+\sqrt{3}\\ &=14 - 4\sqrt{3} \end{aligned} \]
(2) 由数轴知$a\lt -1$,$b\gt 1$, \[ \begin{aligned} &
\therefore原式=-a - b-(a - b)\\ &=-a - b - a + b\\ &=-2a \end{aligned} \]
5 已知$a = \sqrt{2}+1$,$b = \sqrt{2}-1$,则$a^{2}+b^{2}$的值为( )
A. $4\sqrt{2}$
B. $6$
C. $3 - 2\sqrt{2}$
D. $3 + 2\sqrt{2}$
A. $4\sqrt{2}$
B. $6$
C. $3 - 2\sqrt{2}$
D. $3 + 2\sqrt{2}$
答案:
B 解析:当$a = \sqrt{2}+1$,$b = \sqrt{2}-1$时,
\[
\begin{aligned}
&原式=(\sqrt{2}+1)^{2}+(\sqrt{2}-1)^{2}\\
&=3 + 2\sqrt{2}+3 - 2\sqrt{2}\\
&=6
\end{aligned}
\]
6 已知$x = \sqrt{5}-6$,则代数式$x^{2}+5x - 6$的值为( )
A. $2\sqrt{5}+3$
B. $5 - 5\sqrt{5}$
C. $3 - 2\sqrt{5}$
D. $5 - 7\sqrt{5}$
A. $2\sqrt{5}+3$
B. $5 - 5\sqrt{5}$
C. $3 - 2\sqrt{5}$
D. $5 - 7\sqrt{5}$
答案:
D 解析:$\because x = \sqrt{5}-6$,
\[
\begin{aligned}
&
\therefore x^{2}+5x - 6\\ &=(\sqrt{5}-6)^{2}+5(\sqrt{5}-6)-6\\ &=5 + 36-12\sqrt{5}+5\sqrt{5}-30 - 6\\ &=5 - 7\sqrt{5} \end{aligned} \]
\therefore x^{2}+5x - 6\\ &=(\sqrt{5}-6)^{2}+5(\sqrt{5}-6)-6\\ &=5 + 36-12\sqrt{5}+5\sqrt{5}-30 - 6\\ &=5 - 7\sqrt{5} \end{aligned} \]
7 已知$\sqrt{a - 3}+\sqrt{2 - b}=0$,则$\frac{1}{\sqrt{a}}+\frac{\sqrt{6}}{\sqrt{b}}$的值为( )
A. $1$
B. $\sqrt{2}$
C. $\sqrt{3}$
D. $\frac{4\sqrt{3}}{3}$
A. $1$
B. $\sqrt{2}$
C. $\sqrt{3}$
D. $\frac{4\sqrt{3}}{3}$
答案:
D 解析:$\because\sqrt{a - 3}+\sqrt{2 - b}=0$,
$\therefore a - 3 = 0$,$2 - b = 0$,
解得$a = 3$,$b = 2$,
\[
\begin{aligned}
&
\therefore\frac{1}{\sqrt{a}}+\frac{\sqrt{6}}{\sqrt{b}}=\frac{1}{\sqrt{3}}+\frac{\sqrt{6}}{\sqrt{2}}=\frac{\sqrt{3}}{3}+\sqrt{3}=\frac{4\sqrt{3}}{3} \end{aligned} \]
\therefore\frac{1}{\sqrt{a}}+\frac{\sqrt{6}}{\sqrt{b}}=\frac{1}{\sqrt{3}}+\frac{\sqrt{6}}{\sqrt{2}}=\frac{\sqrt{3}}{3}+\sqrt{3}=\frac{4\sqrt{3}}{3} \end{aligned} \]
8 若$a = \sqrt{3}-1$,求$a^{2}+2a + 2$的值.
答案:
解:$\because a = \sqrt{3}-1$,$(a + 1)^{2}=a^{2}+2a + 1$,
\[
\begin{aligned}
&
\therefore a^{2}+2a + 2\\ &=(a + 1)^{2}+1\\ &=(\sqrt{3}-1 + 1)^{2}+1\\ &=3 + 1\\ &=4 \end{aligned} \]
\therefore a^{2}+2a + 2\\ &=(a + 1)^{2}+1\\ &=(\sqrt{3}-1 + 1)^{2}+1\\ &=3 + 1\\ &=4 \end{aligned} \]
查看更多完整答案,请扫码查看