第11页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
1 (2022·青岛)计算$(\sqrt{27}-\sqrt{12})\times\sqrt{\frac{1}{3}}$的结果是( )
A.$\frac{\sqrt{3}}{3}$
B.1
C.$\sqrt{5}$
D.3
A.$\frac{\sqrt{3}}{3}$
B.1
C.$\sqrt{5}$
D.3
答案:
B 解析:$(\sqrt{27}-\sqrt{12})\times\sqrt{\frac{1}{3}}$
$=\sqrt{27\times\frac{1}{3}}-\sqrt{12\times\frac{1}{3}}$
$=\sqrt{9}-\sqrt{4}$
$=3 - 2$
$=1$
故选B.
2 计算$(\sqrt{12}-\sqrt{18})\div\sqrt{6}$得( )
A.$\sqrt{2}-\sqrt{3}$
B.$\sqrt{3}-\sqrt{2}$
C.$6\sqrt{2}-6\sqrt{3}$
D.-1
A.$\sqrt{2}-\sqrt{3}$
B.$\sqrt{3}-\sqrt{2}$
C.$6\sqrt{2}-6\sqrt{3}$
D.-1
答案:
A 解析:$(\sqrt{12}-\sqrt{18})\div\sqrt{6}=\sqrt{12}\div\sqrt{6}-\sqrt{18}\div\sqrt{6}$
$=\sqrt{2}-\sqrt{3}$
3 计算$(\sqrt{6}+\sqrt{8})^2$的结果为( )
A.$14+\sqrt{48}$
B.$14+2\sqrt{48}$
C.$48+8\sqrt{3}$
D.$14+8\sqrt{3}$
A.$14+\sqrt{48}$
B.$14+2\sqrt{48}$
C.$48+8\sqrt{3}$
D.$14+8\sqrt{3}$
答案:
D 解析:$(\sqrt{6}+\sqrt{8})^2=(\sqrt{6})^2+2\times\sqrt{6}\times\sqrt{8}+(\sqrt{8})^2$
$=6 + 2\sqrt{48}+8=14 + 8\sqrt{3}$
4 计算:$(\sqrt{2}+1)(2-\sqrt{2})=$_______.
答案:
$\sqrt{2}$ 解析:$(\sqrt{2}+1)(2-\sqrt{2})=2\sqrt{2}-2 + 2-\sqrt{2}=\sqrt{2}$
5 计算:$(\sqrt{6}-2\sqrt{3})^2=$_______.
答案:
$18 - 12\sqrt{2}$ 解析:$(\sqrt{6}-2\sqrt{3})^2=(\sqrt{6})^2-4\sqrt{18}+(2\sqrt{3})^2$
$=6 - 12\sqrt{2}+12=18 - 12\sqrt{2}$
6 已知$a = 2+\sqrt{3},b = 2-\sqrt{3}$,则多项式$a^2b+ab^2$的值为_______.
答案:
4 解析:$a^2b+ab^2=ab(a + b)$。又$ab=(2+\sqrt{3})\cdot(2-\sqrt{3})=2^2-(\sqrt{3})^2=4 - 3=1$,$a + b=2+\sqrt{3}+2-\sqrt{3}=4$
$\therefore$原式$=1\times4=4$
7 (易错题)计算:$\sqrt{2}\div(\sqrt{3}-\sqrt{2})=$_______.
答案:
$\sqrt{6}+2$ 解析:$\sqrt{2}\div(\sqrt{3}-\sqrt{2})=\frac{\sqrt{2}}{\sqrt{3}-\sqrt{2}}$
$=\frac{\sqrt{2}(\sqrt{3}+\sqrt{2})}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}$
$=\frac{\sqrt{6}+2}{(\sqrt{3})^2-(\sqrt{2})^2}=\frac{\sqrt{6}+2}{3 - 2}=\sqrt{6}+2$
易错警示:除法没有分配律,即$\sqrt{2}\div(\sqrt{3}-\sqrt{2})\neq\sqrt{2}\div\sqrt{3}-\sqrt{2}\div\sqrt{2}$,但$(\sqrt{3}-\sqrt{2})\div\sqrt{2}=\sqrt{3}\div\sqrt{2}-\sqrt{2}\div\sqrt{2}$
8 已知$a + b = 7,ab = 9$,则$\sqrt{a}+\sqrt{b}=$_______.
答案:
$\sqrt{13}$ 解析:$(\sqrt{a}+\sqrt{b})^2=(\sqrt{a})^2+2\sqrt{a}\cdot\sqrt{b}+(\sqrt{b})^2=a+2\sqrt{ab}+b=(a + b)+2\sqrt{ab}=7+2\times3=7 + 6=13$
又$\sqrt{a}>0,\sqrt{b}>0,\therefore\sqrt{a}+\sqrt{b}=\sqrt{13}$
9 计算:(1)$2\sqrt{6}\times\sqrt{\frac{1}{2}}+\sqrt{\frac{3}{2}}\div\sqrt{\frac{1}{18}}$;
(2)$(7 + 4\sqrt{3})(7 - 4\sqrt{3})+(\sqrt{3}-1)^2$;
(3)$(\sqrt{2}+\frac{\sqrt{6}}{2})^2+(\frac{\sqrt{2}}{2})^2$;
(4)$\sqrt{\frac{1}{5}}\times[(\frac{\sqrt{5}+1}{2})^2-(\frac{\sqrt{5}-1}{2})^2]$.
(2)$(7 + 4\sqrt{3})(7 - 4\sqrt{3})+(\sqrt{3}-1)^2$;
(3)$(\sqrt{2}+\frac{\sqrt{6}}{2})^2+(\frac{\sqrt{2}}{2})^2$;
(4)$\sqrt{\frac{1}{5}}\times[(\frac{\sqrt{5}+1}{2})^2-(\frac{\sqrt{5}-1}{2})^2]$.
答案:
解:(1)原式$=2\sqrt{6\times\frac{1}{2}}+\sqrt{\frac{3}{2}\div\frac{1}{18}}=2\sqrt{3}+\sqrt{\frac{3}{2}\times18}=2\sqrt{3}+\sqrt{27}=2\sqrt{3}+3\sqrt{3}=5\sqrt{3}$;
(2)原式$=7^2-(4\sqrt{3})^2+(\sqrt{3})^2-2\sqrt{3}+1=49 - 48+3-2\sqrt{3}+1=5 - 2\sqrt{3}$;
(3)原式$=(\sqrt{2})^2+2\times\sqrt{2}\times\frac{\sqrt{6}}{2}+(\frac{\sqrt{6}}{2})^2+(\frac{\sqrt{2}}{2})^2$
$=2+\sqrt{12}+\frac{6}{4}+\frac{2}{4}=4 + 2\sqrt{3}$;
(4)原式$=\sqrt{\frac{1}{5}}\times[\frac{(\sqrt{5})^2+2\sqrt{5}+1}{4}-\frac{(\sqrt{5})^2-2\sqrt{5}+1}{4}]=\sqrt{\frac{1}{5}}\times(\frac{6 + 2\sqrt{5}}{4}-\frac{6 - 2\sqrt{5}}{4})$
$=\sqrt{\frac{1}{5}}\times\frac{6 + 2\sqrt{5}-6 + 2\sqrt{5}}{4}=\sqrt{\frac{1}{5}}\times\sqrt{5}=1$
10 下列各组数中互为倒数的一组是( )
A.$\sqrt{3}$与$-\sqrt{3}$
B.$2+\sqrt{3}$与$2-\sqrt{3}$
C.$2\sqrt{3}$与$3\sqrt{2}$
D.$2\sqrt{3}+3\sqrt{2}$与$3\sqrt{2}-2\sqrt{3}$
A.$\sqrt{3}$与$-\sqrt{3}$
B.$2+\sqrt{3}$与$2-\sqrt{3}$
C.$2\sqrt{3}$与$3\sqrt{2}$
D.$2\sqrt{3}+3\sqrt{2}$与$3\sqrt{2}-2\sqrt{3}$
答案:
B 解析:$(2+\sqrt{3})(2-\sqrt{3})=2^2-(\sqrt{3})^2=4 - 3=1$
$\therefore2+\sqrt{3}$与$2-\sqrt{3}$互为倒数。
名师点睛:乘积为1的两个数互为倒数。
11 (易错题)当$a>0,b>0$时,$a - b$可以表示为( )
A.$(\sqrt{a}+\sqrt{b})^2$
B.$(\sqrt{a}-\sqrt{b})^2$
C.$(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})$
D.$\frac{a - b}{\sqrt{a}-\sqrt{b}}$
A.$(\sqrt{a}+\sqrt{b})^2$
B.$(\sqrt{a}-\sqrt{b})^2$
C.$(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})$
D.$\frac{a - b}{\sqrt{a}-\sqrt{b}}$
答案:
C
查看更多完整答案,请扫码查看