2025年赢在暑假抢分计划八年级数学人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年赢在暑假抢分计划八年级数学人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年赢在暑假抢分计划八年级数学人教版》

18.(8分)如图,在△ABC中,∠B= 26°,∠C= 70°,AD平分∠BAC,AE⊥BC于点E,EF⊥AD于点F。求:
(1)∠DAC的度数;
(2)∠DEF的度数。
答案:
(1)解:在△ABC中,∠B=26°,∠C=70°
∠BAC=180°-∠B-∠C=180°-26°-70°=84°
∵AD平分∠BAC
∴∠DAC=∠BAC/2=84°/2=42°
(2)解:
∵AE⊥BC
∴∠AEC=90°
在△AEC中,∠CAE=90°-∠C=90°-70°=20°
∠DAE=∠DAC-∠CAE=42°-20°=22°
∵EF⊥AD
∴∠AFE=90°
在△AFE中,∠AEF=90°-∠DAE=90°-22°=68°
∵∠AEC=90°
∴∠DEF=∠AEC-∠AEF=90°-68°=22°
答:
(1)∠DAC的度数为42°;
(2)∠DEF的度数为22°。
19.(10分)在△ABC中,∠BAC= 90°,点D是边BC上一点,将△ACD沿AD折叠后得到△AED,AE交CB于点F。点D在线段BC上。
(1)如图1,若DE//AB,说明△EFD是直角三角形;
(2)如图2,若DE⊥BC,请判断∠CAD与∠C的数量关系,并说明理由。
答案:
解:
(1)如图 1,$\because DE// AB$,$\therefore \angle B = \angle 1$。$\because \angle BAC = 90^{\circ}$,$\therefore \angle B + \angle C = 90^{\circ}$。$\because$将$\triangle ACD$沿$AD$折叠后得到$\triangle AED$,$\therefore \angle C = \angle E$,$\therefore \angle 1 + \angle E = 90^{\circ}$,$\therefore \angle EFD = 90^{\circ}$。即$\triangle EFD$是直角三角形;
         图1    图2
(2)$\angle CAD + \angle C = 45^{\circ}$。理由:如图 2,$\because DE\perp BC$,$\therefore \angle 2 = 90^{\circ}-\angle E$。由
(1)可知$\angle C = \angle E$,$\therefore \angle 2 = 90^{\circ}-\angle C$。$\because$将$\triangle ACD$沿$AD$折叠后得到$\triangle AED$,$\therefore \angle EAC = 2\angle 4$。$\because \angle 2 = \angle EAC + \angle C$。$\therefore 90^{\circ}-\angle C = 2\angle 4 + \angle C$,化简,得$\angle 4 + \angle C = 45^{\circ}$,即$\angle CAD + \angle C = 45^{\circ}$。
20.(12分)取一副直角三角板按图1拼接,固定三角板ADC,将三角板ABC绕点A按顺时针方向旋转得到△ABC',如图2所示。设∠CAC'= α(0°<α≤45°)。
(1)当α= 15°时,求证:AB//CD;
(2)连接BD,当0°<α≤45°时,∠DBC'+∠CAC'+∠BDC的度数是否变化,若变化,求出变化范围;若不变,求出其度数。
答案:
(1)证明:$\because \angle CAC' = 15^{\circ}$,$\angle BAC' = 45^{\circ}$,
$\therefore \angle BAC = \angle BAC' - \angle CAC' = 45^{\circ} - 15^{\circ} = 30^{\circ}$。
$\because \angle ACD = 30^{\circ}$,
$\therefore \angle BAC = \angle ACD$,
$\therefore AB // CD$。
(2)解:$\angle DBC' + \angle CAC' + \angle BDC$的度数不变。
连接$CC'$,
$\because \angle DBC' + \angle BDC + \angle BOC' = 180^{\circ}$,$\angle DCC' + \angle BC'C + \angle C'OC = 180^{\circ}$,且$\angle BOC' = \angle C'OC$,
$\therefore \angle DBC' + \angle BDC = \angle DCC' + \angle BC'C$。
$\because \angle CAC' + \angle ACC' + \angle AC'C = 180^{\circ}$,$\angle ACC' = \angle ACD + \angle DCC'$,$\angle AC'C = \angle AC'B + \angle BC'C$,
$\therefore \angle CAC' + \angle ACD + \angle DCC' + \angle AC'B + \angle BC'C = 180^{\circ}$。
$\because \angle AC'B = 45^{\circ}$,$\angle ACD = 30^{\circ}$,
$\therefore \angle CAC' + 30^{\circ} + (\angle DBC' + \angle BDC) + 45^{\circ} = 180^{\circ}$,
$\therefore \angle DBC' + \angle CAC' + \angle BDC = 180^{\circ} - 30^{\circ} - 45^{\circ} = 105^{\circ}$。

查看更多完整答案,请扫码查看

关闭