2025年活动单导学课程高中数学必修第一册人教版A版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年活动单导学课程高中数学必修第一册人教版A版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第1页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
- 第118页
- 第119页
- 第120页
- 第121页
- 第122页
- 第123页
- 第124页
- 第125页
- 第126页
- 第127页
- 第128页
- 第129页
- 第130页
- 第131页
- 第132页
- 第133页
- 第134页
- 第135页
- 第136页
- 第137页
- 第138页
- 第139页
- 第140页
- 第141页
- 第142页
- 第143页
- 第144页
- 第145页
- 第146页
- 第147页
- 第148页
- 第149页
- 第150页
- 第151页
- 第152页
- 第153页
- 第154页
- 第155页
- 第156页
- 第157页
- 第158页
- 第159页
- 第160页
- 第161页
- 第162页
- 第163页
- 第164页
- 第165页
- 第166页
- 第167页
- 第168页
- 第169页
- 第170页
- 第171页
- 第172页
- 第173页
- 第174页
- 第175页
- 第176页
- 第177页
- 第178页
- 第179页
- 第180页
- 第181页
- 第182页
- 第183页
- 第184页
- 第185页
- 第186页
- 第187页
- 第188页
- 第189页
- 第190页
- 第191页
- 第192页
- 第193页
- 第194页
- 第195页
- 第196页
- 第197页
- 第198页
- 第199页
- 第200页
- 第201页
- 第202页
- 第203页
- 第204页
- 第205页
- 第206页
- 第207页
- 第208页
- 第209页
- 第210页
- 第211页
- 第212页
- 第213页
- 第214页
- 第215页
- 第216页
- 第217页
- 第218页
- 第219页
- 第220页
- 第221页
- 第222页
- 第223页
- 第224页
- 第225页
- 第226页
- 第227页
- 第228页
- 第229页
- 第230页
- 第231页
- 第232页
- 第233页
- 第234页
- 第235页
- 第236页
- 第237页
- 第238页
- 第239页
- 第240页
- 第241页
- 第242页
- 第243页
- 第244页
- 第245页
- 第246页
- 第247页
“集合”是日常生活中的一个常用词,现代汉语解释为“许多的人或物聚在一起”.
在小学和初中,我们已经接触过一些集合.例如,自然数的集合,同一平面内到一个定点的距离等于定长的点的集合(即圆)等.下面先从集合的含义开始.
看下面的例子:
(1)$1\sim10$之间的所有偶数;
(2) 立德中学今年入学的全体高一学生;
(3) 所有的正方形;
(4) 到直线$l$的距离等于定长$d$的所有点;
(5) 方程$x^2 - 3x + 2 = 0$的所有实数根;
(6) 地球上的四大洋.
例(1)中,我们把$1\sim10$之间的每一个偶数作为元素,这些元素的全体就是一个集合;同样的,例(2)中,把立德中学今年入学的每一位高一学生作为元素,这些元素的全体也是一个集合.
思考1
上面的例(3)到例(6)也都能组成集合吗?它们的元素分别是什么?
思考2
通过以上讨论,你能给出元素与集合的概念吗?
在小学和初中,我们已经接触过一些集合.例如,自然数的集合,同一平面内到一个定点的距离等于定长的点的集合(即圆)等.下面先从集合的含义开始.
看下面的例子:
(1)$1\sim10$之间的所有偶数;
(2) 立德中学今年入学的全体高一学生;
(3) 所有的正方形;
(4) 到直线$l$的距离等于定长$d$的所有点;
(5) 方程$x^2 - 3x + 2 = 0$的所有实数根;
(6) 地球上的四大洋.
例(1)中,我们把$1\sim10$之间的每一个偶数作为元素,这些元素的全体就是一个集合;同样的,例(2)中,把立德中学今年入学的每一位高一学生作为元素,这些元素的全体也是一个集合.
思考1
上面的例(3)到例(6)也都能组成集合吗?它们的元素分别是什么?
思考2
通过以上讨论,你能给出元素与集合的概念吗?
答案:
思考1:能组成集合。
(3)元素:所有的正方形;
(4)元素:到直线$l$的距离等于定长$d$的所有点;
(5)元素:方程$x^2 - 3x + 2 = 0$的所有实数根;
(6)元素:地球上的四大洋。
思考2:元素:研究对象;集合:元素的全体。
(3)元素:所有的正方形;
(4)元素:到直线$l$的距离等于定长$d$的所有点;
(5)元素:方程$x^2 - 3x + 2 = 0$的所有实数根;
(6)元素:地球上的四大洋。
思考2:元素:研究对象;集合:元素的全体。
思考3
对于给定的集合,它的元素确定吗?
对于给定的集合,它的元素确定吗?
答案:
确定。
根据集合中元素的确定性可知,给定一个集合,那么任何一个元素在不在这个集合中就确定了,即给定的集合,它的元素是确定的。
根据集合中元素的确定性可知,给定一个集合,那么任何一个元素在不在这个集合中就确定了,即给定的集合,它的元素是确定的。
思考4
对于一个给定的集合,它的元素可以相同吗?
对于一个给定的集合,它的元素可以相同吗?
答案:
集合中的元素具有互异性,即集合中的元素都不相同。
所以对于一个给定的集合,它的元素不可以相同。
所以对于一个给定的集合,它的元素不可以相同。
查看更多完整答案,请扫码查看