2025年辽宁作业分层培优学案八年级数学上册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年辽宁作业分层培优学案八年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年辽宁作业分层培优学案八年级数学上册人教版》

1. 用直尺和圆规作∠AOB的平分线的示意图如图所示,用下面的三角形全等判定方法解释其作图原理,最为恰当的是(
B
)

A.SAS
B.SSS
C.AAS
D.ASA
答案: B
2. (新考法·数学文化)《周髀算经》中记载了一种确定东南西北方向的方法。大意是:在平地上点A处立一根杆,记录日出时杆影子的长度AB,并以点A为圆心,AB长为半径画圆,记录同一天日落时杆影子的痕迹与此圆的交点C,那么直线CB表示的方向就是东西方向,∠BAC的平分线所在的直线表示的方向就是南北方向。在上述方法中,点A,B,C的位置如图所示,使用直尺和圆规,在图中作∠BAC的平分线AD。(不写作法,保留作图痕迹)
答案:
解:如图,射线AD即为所求
3. 如图,射线OP平分∠AOB,PC⊥OA,垂足为C,点M是射线OB上的一个动点,若CP = 10,则线段PM最短为(
B
)

A.5
B.10
C.15
D.20
答案: B
4. 如图,在△ABC中,∠C = 90°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E。若BC = 4,DE = 1.6,则BD的长为
2.4

答案: 2.4
5. 如图,BD为∠ABC的平分线,AB = BC,点P在BD上,PM⊥AD于点M,PN⊥CD于点N。求证:PM = PN。
答案: 证明:
∵ BD为∠ABC的平分线,
∴ ∠ABD=∠CBD.
在△ABD和△CBD中,$\left\{\begin{array}{l} AB=CB,\\ ∠ABD=∠CBD,\\ BD=BD,\end{array}\right. $
∴ △ABD≌△CBD(SAS),
∴ ∠ADB=∠CDB.
∵ 点P在BD上,PM⊥AD,PN⊥CD,
∴ PM=PN.
6. 求证:三角形一条边的两个顶点到这条边上的中线所在直线的距离相等。
答案:
已知:如图,AD是△ABC的中线,作BM⊥AD交AD的延长线于点M,CN⊥AD于点N.
求证:BM=CN.

证明:
∵ BM⊥AD,CN⊥AD,
∴ ∠BMD=∠CND=90°.
∵ AD是△ABC的中线,
∴ BD=CD.
在△BDM和△CDN中,$\left\{\begin{array}{l} ∠BMD=∠CND,\\ ∠BDM=∠CDN,\\ BD=CD,\end{array}\right. $
∴ △BDM≌△CDN(AAS),
∴ BM=CN,
即三角形一条边的两个顶点到这条边上的中线所在直线的距离相等.
7. 某班开展“用直尺和圆规作角平分线”的探究活动,各组展示作图痕迹如下,其中射线OP为∠AOB的平分线的有(
D
)

A.0个
B.1个
C.2个
D.3个
答案: D

查看更多完整答案,请扫码查看

关闭