2025年暑假大串联七年级数学人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年暑假大串联七年级数学人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年暑假大串联七年级数学人教版》

18. (1)如图,$DE// BC$,$CD\perp AB$,$GF\perp AB$,试说明$\angle CDE=\angle BGF$;
$\because DE // BC$,$\therefore \angle CDE = \angle BCD$,$\because CD \perp AB$,$GF \perp AB$,$\therefore CD // GF$,$\therefore \angle BGF = \angle BCD$,$\therefore \angle CDE = \angle BGF$

(2)若把(1)中的已知“$GF\perp AB$”与结论“$\angle CDE=\angle BGF$”对调,所得的命题是真命题还是假命题?请判断并说明理由。
是真命题,理由:$\because DE // BC$,$\therefore \angle CDE = \angle BCD$,$\because \angle CDE = \angle BGF$,$\therefore \angle BCD = \angle BGF$,$\therefore CD // GF$,$\because CD \perp AB$,$\therefore GF \perp AB$
答案: (1)$\because DE // BC$,$\therefore \angle CDE = \angle BCD$,$\because CD \perp AB$,$GF \perp AB$,$\therefore CD // GF$,$\therefore \angle BGF = \angle BCD$,$\therefore \angle CDE = \angle BGF$;
(2)是真命题,理由:$\because DE // BC$,$\therefore \angle CDE = \angle BCD$,$\because \angle CDE = \angle BGF$,$\therefore \angle BCD = \angle BGF$,$\therefore CD // GF$,$\because CD \perp AB$,$\therefore GF \perp AB$.
19. 如图,已知射线$AM// BN$,连接$AB$,点$P$是射线$AM$上的一个动点(与点$A$不重合),$BC$平分$\angle ABP$交$AM$于点$C$,$BD$平分$\angle PBN$交$AM$于点$D$。
(1)若$\angle A = 60^{\circ}$,求$\angle CBD$的度数;
60°

(2)数学兴趣小组探索后发现无论点$P$在射线$AM$上的什么位置,$\angle APB$与$\angle ADB$之间的数量关系都保持不变,请你写出它们的关系,并说明理由。
$\angle APB = 2\angle ADB$
答案: (1)$\because AM // BN$,$\angle A = 60^{\circ}$,$\therefore \angle ABN = 120^{\circ}$,$\because BC$ 平分 $\angle ABP$ 交 $AM$ 于点 $C$,$BD$ 平分 $\angle PBN$ 交 $AM$ 于点 $D$,$\therefore \angle PBD = \frac{1}{2}\angle PBN$,$\angle CBP = \frac{1}{2}\angle ABP$,$\therefore \angle CBD = \angle PBD + \angle CBP = \frac{1}{2}(\angle PBN + \angle ABP) = \frac{1}{2}\angle ABN = 60^{\circ}$;
(2)$\angle APB = 2\angle ADB$,理由如下:
$\because AM // BN$,$\therefore \angle APB = \angle PBN$,$\angle ADB = \angle NBD$,$\because BD$ 平分 $\angle PBN$,$\therefore \angle PBN = 2\angle NBD$,$\therefore \angle APB = 2\angle ADB$.
20. (1)如图1,已知:$AB// CD$,请说明$\angle A+\angle APC+\angle C = 360^{\circ}$;
(2)如图2,已知:$AB// CD$,$EF\perp AB$于点$M$,$FG$交$CD$于点$N$。若$\angle 1 = 135^{\circ}$,则$\angle 2$的度数为多少?

答案:
(1)过点 $P$ 作 $PE // AB$,如图,
P
$\because AB // CD$,$\therefore AB // CD // PE$,$\therefore \angle A + \angle APE = 180^{\circ}$,$\angle C + \angle CPE = 180^{\circ}$,$\therefore \angle A + \angle APC + \angle C = \angle A + \angle APE + \angle CPE + \angle C = 360^{\circ}$;
(2)过点 $F$ 作 $FH // AB$,如图,

$\because EF \perp AB$ 于点 $M$,$\therefore \angle EMB = 90^{\circ}$,$\because AB // CD$,$FH // AB$,$\therefore AB // CD // FH$,$\therefore \angle MFH = \angle EMB = 90^{\circ}$,$\angle 2 = \angle NFH$,$\because \angle 1 = 135^{\circ}$,$\therefore \angle 2 = \angle NFH = \angle 1 - \angle MFH = 135^{\circ} - 90^{\circ} = 45^{\circ}$.

查看更多完整答案,请扫码查看

关闭