第8页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
8. 已知$x= \sqrt{3}+1$,$y= \sqrt{3}-1则x^2-y^2= $
$ 4\sqrt{3} $
.
答案:
$ 4\sqrt{3} $
9. 若最简二次根式$\sqrt{1+2a}与\sqrt{5-2a}$可以合并,则$a=$
1
.
答案:
1
10. 已知$a$,$b$,$c$为三角形三边的长,则$\sqrt{(a+b-c)^2}+\sqrt{(b-c-a)^2}+\sqrt{(b+c-a)^2}= $
$a + b + c$
.
答案:
$ a + b + c $
11. 计算:$(4\sqrt{2}-3\sqrt{6})÷2\sqrt{2}$.
答案:
$ \frac{4 - 3\sqrt{3}}{2} $
12. 先化简,再求值:$\frac{a^2+2a+1}{a^2-1}-\frac{a}{a-1}$,其中$a= \sqrt{3}+1$.
答案:
原式 $ = \frac{1}{a - 1} $,当 $ a = \sqrt{3} + 1 $ 时,原式 $ = \frac{\sqrt{3}}{3} $。
查看更多完整答案,请扫码查看